Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T05:52:26.907Z Has data issue: false hasContentIssue false

Planetary Nebulae and their parent stellar populations. Tracing the mass assembly of M87 and Intracluster light in the Virgo cluster core

Published online by Cambridge University Press:  09 May 2016

Magda Arnaboldi
Affiliation:
ESO, K. Schwarzschild Str. 2, 85748 Garching, Germany email: [email protected] INAF, Oss. Astr. di Pino Torinese, 10025 Pino Torinese, Italy
Alessia Longobardi
Affiliation:
Max-Planck-Institut für Extraterrestrische Physik, Postsach 1312, 85741 Garching, Germany
Ortwin Gerhard
Affiliation:
Max-Planck-Institut für Extraterrestrische Physik, Postsach 1312, 85741 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The diffuse extended outer regions of galaxies are hard to study because they are faint, with typical surface brightness of 1% of the dark night sky. We can tackle this problem by using resolved star tracers which remain visible at large distances from the galaxy centers. This article describes the use of Planetary Nebulae as tracers and the calibration of their properties as indicators of the star formation history, mean age and metallicity of the parent stars in the Milky Way and Local Group galaxies. We then report on the results from a deep, extended, planetary nebulae survey in a 0.5 deg2 region centered on the brightest cluster galaxy NGC 4486 (M87) in the Virgo cluster core, carried out with SuprimeCam@Subaru and FLAMES-GIRAFFE@VLT. Two planetary nebulae populations are identified out to 150 kpc distance from the center of M87. One population is associated with the M87 halo and the second one with the intracluster light in the Virgo cluster core. They have different line-of-sight velocity and spatial distributions, as well as different planetary nebulae specific frequencies and luminosity functions. The intracluster planetary nebulae in the surveyed region correspond to a luminosity of four times the luminosity of the Large Magellanic Cloud. The M87 halo planetary nebulae trace an older, more metal-rich, parent stellar population. A substructure detected in the projected phase-space of the line-of-sight velocity vs. major axis distance for the M87 halo planetary nebulae provides evidence for the recent accretion event of a satellite galaxy with luminosity twice that of M33. The satellite stars were tidally stripped about 1 Gyr ago, and reached apocenter at a major axis distance of 60–90 kpc from the center of M87. The M87 halo is still growing significantly at the distances where the substructure is detected.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Aguerri, J. A. L., Gerhard, O. E., Arnaboldi, M., Napolitano, N. R., et al. 2005, AJ, 129, 2585CrossRefGoogle Scholar
Arnaboldi, M., Doherty, M., Gerhard, O. E., Ciardullo, R.et al. 2008, ApJ, 674, L17Google Scholar
Arnaboldi, M., Freeman, K. C., Okamura, S., Yasuda, N.et al. 2003, AJ, 125, 514CrossRefGoogle Scholar
Arnaboldi, M., Aguerri, J. A. L., Napolitano, N. R., Gerhard, O. E.et al. 2002, AJ, 123, 760CrossRefGoogle Scholar
Binggeli, B., Tammann, G. A., & Sandage, A. 1987, AJ, 94, 251Google Scholar
Buzzoni, A., Arnaboldi, M., & Corradi, R. 2006, MNRAS, 368, 877CrossRefGoogle Scholar
Castro-Rodriguez, N., Arnaboldi, M., Aguerri, J. A. L., Gerhard, O.et al. 2009, A&A, 507, 621Google Scholar
Ciardullo, R., Sigurdsson, S., Feldmeier, J. J., Jacoby, G. H. 2005 ApJ 629, 499CrossRefGoogle Scholar
Ciardullo, R., Durrell, P. R., Laychak, M. B.et al. 2004, ApJ, 614, 167Google Scholar
Ciardullo, R., Feldmeier, J. J., Jacoby, G. H., KuzioAAAAdeAAAANaray, R.et al. 2002, ApJ, 577, 31CrossRefGoogle Scholar
Ciardullo, R., Jacoby, G. H., Feldmeier, J. J., & Bartlett, R. E. 1998, ApJ, 492, 62Google Scholar
Ciardullo, R., Jacoby, G. H., Ford, H. C., & Neill, J. D. 1989, ApJ, 339, 53Google Scholar
Coccato, L., Gerhard, O., Arnaboldi, M.et al. 2009, MNRAS, 394, 1249Google Scholar
Cooper, A. P., Gao, L., Guo, Q., Frenk, C. S., et al. 2015, MNRAS, 451, 2703Google Scholar
Cortesi, A., Arnaboldi, M., Coccato, L.et al. 2013, A&A, 549, 115Google Scholar
De Lucia, G.,& Blaizot, J. 2007, MNRAS, 375, 2CrossRefGoogle Scholar
Doherty, M., Arnaboldi, M., Das, P., Gerhard, O.et al. 2009, A&A, 502, 771Google Scholar
Dopita, M., Massaglia, S., Bodo, G., Arnaboldi, M.et al. 2000, ASPC, 199, 423Google Scholar
Dopita, M., Jacoby, G. H., & Vassiliadis, E. 1992, ApJ, 389, 27Google Scholar
Jacoby, G. H. & De Marco, O. 2002, AJ, 123, 269CrossRefGoogle Scholar
Jacoby, G. H. 1989, ApJ, 339, 39Google Scholar
Kormendy, J., Fisher, D. B., Cornell, M. E., & Bender, R. 2009, ApJS, 182, 216Google Scholar
Hernández-Martínez, L. & Peña, M. 2009, A&A, 495, 447Google Scholar
Henize, K. G. & Westerlund, B. E. 1963, ApJ, 137, 747Google Scholar
Longobardi, A., Arnaboldi, M., Gerhard, O., & Hanuschik, R. 2015a, A&A 579, 135Google Scholar
Longobardi, A., Arnaboldi, M., Gerhard, O., & Mihos, J. C. 2015b, A&A 579L, 3Google Scholar
Longobardi, A., Arnaboldi, M., Gerhard, O., Coccato, L.et al. 2013, A&A 558, 42Google Scholar
Marigo, P., Girardi, L., Weiss, A., Groenewegen, M. A. T., et al. 2004, A&A, 423Google Scholar
Oser, L., Ostriker, J. P., Naab, T., Johansson, P. H., et al. 2010, ApJ, 725, 2312Google Scholar
Quinn, P. J. 1984, ApJ, 279, 596Google Scholar
Reid, W. A. & Parker, Q. A. 2010, MNRAS, 405, 1349Google Scholar
Rudick, C. S., Mihos, J. C., Harding, P., Feldmeier, J. J.et al. 2010, ApJ, 720, 569Google Scholar
Villaver, E. & Stanghellini, L. 2005, ApJ, 632, 854Google Scholar
Weil, M. L., Bland-Hawthorn, J., & Malin, D. F. 1997, ApJ 490, 664Google Scholar
Williams, B. F., Ciardullo, R., Durrell, P. R., Vinciguerra, M.et al. 2007, ApJ, 656, 756Google Scholar