Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T08:43:30.711Z Has data issue: false hasContentIssue false

Planetary migration in gaseous protoplanetary disks

Published online by Cambridge University Press:  01 October 2007

Frédéric S. Masset*
Affiliation:
Laboratoire AIM, CEA/DSM - CNRS - Université Paris Diderot, DAPNIA/Service d'Astrophysique, CEA/Saclay, 91191 Gif/Yvette Cedex, France, and IA-UNAM, Ciudad Universitaria, Apartado Postal, 70-264, Mexico, D.F. 04510, Mexico
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Tides come from the fact that different parts of a system do not fall in exactly the same way in a non-uniform gravity field. In the case of a protoplanetary disk perturbed by an orbiting, prograde protoplanet, the protoplanet tides raise a wake in the disk which causes the orbital elements of the planet to change over time. The most spectacular result of this process is a change in the protoplanet's semi-major axis, which can decrease by orders of magnitude on timescales shorter than the disk lifetime. This drift in the semi-major axis is called planetary migration. In a first part, we describe how the planet and disk exchange angular momentum and energy at the Lindblad and corotation resonances. Next we review the various types of planetary migration that have so far been contemplated: type I migration, which corresponds to low-mass planets (less than a few Earth masses) triggering a linear disk response; type II migration, which corresponds to massive planets (typically at least one Jupiter mass) that open up a gap in the disk; “runaway” or type III migration, which corresponds to sub-giant planets that orbit in massive disks; and stochastic or diffusive migration, which is the migration mode of low- or intermediate-mass planets embedded in turbulent disks. Lastly, we present some recent results in the field of planetary migration.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Artymowicz, P., 1993, ApJ, 419, 155CrossRefGoogle Scholar
Balbus, S. A. & Hawley, J. F., 1991, ApJ, 376, 214CrossRefGoogle Scholar
Baruteau, C. & Masset, F., 2008, ApJ, 672, 1054Google Scholar
Baruteau, C. & Masset, F., 2008, in: Sun, Y.-S., Ferraz-Mello, S. & Zhou, J.-L., (eds.), Exoplanets: Detection, Formation and Dynamics, Proc. IAU Symposium No. 249 (Suzhou,China), p. 391Google Scholar
Bryden, G., Chen, X., Lin, D. N. C., Nelson, R. P., & Papaloizou, J. C. B., 1999, ApJ, 514, 344Google Scholar
Crida, A., Morbidelli, A., & Masset, F., 2006, Icarus, 181, 587CrossRefGoogle Scholar
Fromang, S. & Nelson, R. P., 2006, A&A, 457, 343Google Scholar
Fromang, S., Terquem, C., & Balbus, S. A., 2002, MNRAS, 329, 18CrossRefGoogle Scholar
Fromang, S., Terquem, C., & Nelson, R. P., 2005, MNRAS, 363, 943CrossRefGoogle Scholar
Gammie, C. F., 1996, ApJ, 457, 355CrossRefGoogle Scholar
Goldreich, P. & Tremaine, S., 1979, ApJ, 233, 857CrossRefGoogle Scholar
Goldreich, P. & Tremaine, S., 1980, ApJ, 241, 425Google Scholar
Goodman, J. & Rafikov, R. R., 2001, ApJ, 552, 793CrossRefGoogle Scholar
Hawley, J. F. & Balbus, S. A., 1991, ApJ, 376, 223CrossRefGoogle Scholar
Hawley, J. F. & Balbus, S. A., 1992, Bulletin of the American Astronomical Society 24, 1234Google Scholar
Jang-Condell, H. & Sasselov, D. D., 2005, ApJ, 619, 1123CrossRefGoogle Scholar
Johnson, E. T., Goodman, J., & Menou, K., 2006, ApJ, 647, 1413CrossRefGoogle Scholar
Kley, W., 1999, MNRAS, 303, 696CrossRefGoogle Scholar
Kley, W., 2000, MNRAS, 313, L47CrossRefGoogle Scholar
Kley, W., Peitz, J., & Bryden, G., 2004, A&A, 414, 735Google Scholar
Kley, W., Lee, M. H., Murray, N., & Peale, S. J., 2005, A&A, 437, 727Google Scholar
Kretke, K. A.Lin, D. N. C., & Turner, N. J. 2008, in: Sun, Y.-S., Ferraz-Mello, S. & Zhou, J.-L., (eds.), Exoplanets: Detection, Formation and Dynamics, Proc. IAU Symposium No. 249 (Suzhou,China), p. 293CrossRefGoogle Scholar
Laughlin, G., Steinacker, A., & Adams, F. C., 2004, ApJ, 608, 489CrossRefGoogle Scholar
Lee, M. H., & Peale, S. J., 2002, ApJ, 567, 596CrossRefGoogle Scholar
Lin, D. N. C., Bodenheimer, P., & Richardson, D. C., 1996, Nature 380, 606CrossRefGoogle Scholar
Lin, D. N. C. & Papaloizou, J., 1979, MNRAS, 186, 799CrossRefGoogle Scholar
Lin, D. N. C. & Papaloizou, J., 1986, ApJ, 309, 846CrossRefGoogle Scholar
Lin, D. N. C. & Papaloizou, J. C. B., 1993, in Levy, E. H. & Lunine, J. I. (eds.), Protostars and Planets III, pp 749–835Google Scholar
Lubow, S. H., Seibert, M., & Artymowicz, P., 1999, ApJ, 526, 1001CrossRefGoogle Scholar
Masset, F., & Snellgrove, M., 2001, MNRAS, 320, L55CrossRefGoogle Scholar
Masset, F. S. & Papaloizou, J. C. B., 2003, ApJ, 588, 494CrossRefGoogle Scholar
Mayor, M., Queloz, D., Marcy, G., Butler, P., Noyes, R., Korzennik, S., Krockenberger, M., Nisenson, P., Brown, T., Kennelly, T., Rowland, C., Horner, S., Burki, G., Burnet, M., & Kunzli, M. 1995, IAU Circ. 6251, 1Google Scholar
Menou, K. & Goodman, J., 2004, ApJ, 606, 520CrossRefGoogle Scholar
Meyer-Vernet, N. & Sicardy, B., 1987, Icarus, 69, 157CrossRefGoogle Scholar
Morbidelli, A., & Crida, A., 2007, Icarus, 191, 158CrossRefGoogle Scholar
Muto, T., Machida, M., & Inutsuka, S., 2007, ArXiv Astrophysics e-prints 0712.1060Google Scholar
Muto, T., Machida, M. N., & Inutsuka, S.-I., 2008, in: Sun, Y.-S., Ferraz-Mello, S., & Zhou, J.-L., (eds.), Exoplanets: Detection, Formation and Dynamics, Proc. IAU Symposium No. 249 (Suzhou,China), p. 399Google Scholar
Nelson, A. F., & Benz, W., 2003, ApJ, 589, 556CrossRefGoogle Scholar
Nelson, R. P., 2005, A&A 443, 1067Google Scholar
Nelson, R. P. & Papaloizou, J. C. B., 2003, MNRAS, 339, 993CrossRefGoogle Scholar
Nelson, R. P. & Papaloizou, J. C. B., 2004, MNRAS, 350, 849CrossRefGoogle Scholar
Nelson, R. P., Papaloizou, J. C. B., Masset, F. S., & Kley, W., 2000, MNRAS, 318, 18CrossRefGoogle Scholar
Ogilvie, G. I. & Lubow, S. H., 2003, ApJ, 587, 398CrossRefGoogle Scholar
Paardekooper, S. & Mellema, G., 2006, A&A, 459, 17Google Scholar
Paardekooper, S. & Mellema, G., 2007, ArXiv Astrophysics e-prints 0711.3601, accepted by A&AGoogle Scholar
Paardekooper, S. & Papaloizou, J., 2007, submitted to A&AGoogle Scholar
Papaloizou, J. C. B., Nelson, R. P., Kley, W., Masset, F. S., and Artymowicz, P., 2007, Protostars and Planets V, 655Google Scholar
Papaloizou, J. C. B., Nelson, R. P., & Snellgrove, M. D., 2004a, MNRAS, 350, 829CrossRefGoogle Scholar
Papaloizou, J. C. B., Nelson, R. P., & Snellgrove, M. D., 2004b, MNRAS, 350, 829CrossRefGoogle Scholar
Pepliński, A., Artymowicz, P., & Mellema, G., 2007a, ArXiv Astrophysics e-prints 0709.3622, submitted to MNRASGoogle Scholar
Pepliński, A., Artymowicz, P., & Mellema, G., 2007b, ArXiv Astrophysics e-prints 0709.3754, submitted to MNRASGoogle Scholar
Pierens, A., & Huré, J.-M., 2005, A&A, 433, L37Google Scholar
Pierens, A., & Nelson, R. P., 2007, A&A, 472, 993Google Scholar
Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y., 1996, Icarus, 124, 62CrossRefGoogle Scholar
Snellgrove, M. D., Papaloizou, J. C. B., & Nelson, R. P., 2001, A&A, 374, 1092Google Scholar
Tanaka, H., Takeuchi, T., & Ward, W. R., 2002, ApJ, 565, 1257CrossRefGoogle Scholar
Terquem, C. E. J. M. L. J., 2003, MNRAS, 341, 1157CrossRefGoogle Scholar
Ward, W. R., 1986, Icarus, 67, 164CrossRefGoogle Scholar
Ward, W. R., 1997, Icarus, 126, 261CrossRefGoogle Scholar
Winters, W. F., Balbus, S. A., & Hawley, J. F., 2003, ApJ, 589, 543CrossRefGoogle Scholar
Zhang, X. J., Kretke, K. A., & Lin, D. N. C. 2008, in: Sun, Y.-S., Ferraz-Mello, S. & Zhou, J.-L., (eds.), Exoplanets: Detection, Formation and Dynamics, Proc. IAU Symposium No. 249 (Suzhou,China), p. 309Google Scholar
Zhang, H., & Zhou, J.-L. 2008, in: Sun, Y.-S., Ferraz-Mello, S. & Zhou, J.-L. (eds.), Exoplanets: Detection, Formation and Dynamics, Proc. IAU Symposium No. 249 (Suzhou, China), p. 413Google Scholar