Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T20:56:18.225Z Has data issue: false hasContentIssue false

Planetary and lunar ephemeris EPM2021 and its significance for Solar system research

Published online by Cambridge University Press:  30 May 2022

Elena Pitjeva
Affiliation:
Insitute of Applied Astronomy RAS, Kutuzova Embankment, 10, 191187 St. Petersburg, Russia email: [email protected], [email protected], [email protected]
Dmitry Pavlov
Affiliation:
St. Petersburg Electrotechnical University ul. Professora Popova 5, 197376 St. Petersburg, Russia email: [email protected]
Dan Aksim
Affiliation:
Insitute of Applied Astronomy RAS, Kutuzova Embankment, 10, 191187 St. Petersburg, Russia email: [email protected], [email protected], [email protected]
Margarita Kan
Affiliation:
Insitute of Applied Astronomy RAS, Kutuzova Embankment, 10, 191187 St. Petersburg, Russia email: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present an updated public version of EPM (Ephemerides of Planets and the Moon). Since the last public version, EPM2017, many improvements were made in both the observational database and the mathematical model. Latest lunar laser ranging observations have been added, as well as radio ranges of Juno spacecraft and more recent ranges of Odyssey and Mars Reconnaissance Orbiter. EPM2021 uses a new improved way to calculate radio signal delays in solar plasma and has a major update in the method of determination of asteroid masses. Also, a delay-capable multistep numerical integrator was implemented for EPM in order to properly account for tide delay in the equations of the motion of the Moon. The improved processing accuracy has allowed to refine existing estimates of the mass of the Sun and its change rate, parameters of the Earth–Moon system, masses of the Main asteroid belt and the Kuiper belt; and also to raise important questions about existing numerical models of solar wind.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of International Astronomical Union

References

Aksim, D., Pavlov, D. Math Comp Sci 14, 103 CrossRefGoogle Scholar
Avdyushev, V. 2010, Computational technologies, 15, 31 (in Russian)Google Scholar
Chabé, J., Courde, C., Torre, J.-M. 2020. Earth and Space Science, 7.Google Scholar
Eckl, J., Schreiber, U., Schüler, T. 2019. Proc. SPIE 11027, 1102708.Google Scholar
Ershova, A., Roshchina, E., Izmailov, I., 2016, Planetary and Space Science, 134.CrossRefGoogle Scholar
Fienga, A., Deram, P., Viswanathan, V. et al. 2019, N. Sci. et Tech. de l’Inst. de méc. cél., S109Google Scholar
Folkner, W., Williams, J., Boggs, D., Park, R., Kuchynka, P. 2014. IPN Progress Report 42196.Google Scholar
Kuchynka, P., Laskar, J., Fienga, A., Manche, H. 2010. A&A, 514, A96.Google Scholar
Kuchynka, P., Folkner, W., Konopliv, A. 2012. IPN Progress Report 42190.Google Scholar
Kuchynka, P., Folkner, W. 2013. Icarus, 222, 243.CrossRefGoogle Scholar
Kurdubov, S., Pavlov, D., Mironova, M., Kaplev, S. 2019, MNRAS, 486, 815.CrossRefGoogle Scholar
Narizhnaya, N., Khovrichev, M., Apetyan, A. et al. 2018, Sol Syst Res 52, 312.CrossRefGoogle Scholar
Narizhnaya, N., Khovrichev, M., Bikulova, D. 2019, Sol Syst Res 53, 368.CrossRefGoogle Scholar
Park, R., Folkner, W., Williams, J., Boggs, H. 2021, AJ, 161, 105 CrossRefGoogle Scholar
Pavlov, D., Williams, J.m Suvorkin, V. 2016, Cel. Mech. Dyn. Astr, 126, 61 CrossRefGoogle Scholar
Pavlov, D. 2019. In: Bizouard, C., Souchay, J. (eds), Proceedings of the Journées 2019 “Systèmes de référence temps-espace, p. 309.Google Scholar
Pavlov, D. 2020. J. Geod. 94, 5 CrossRefGoogle Scholar
Pavlov, D., Skripnichenko, V. 2015. In: Malkin, Z. and Capitaine, N. (eds), Proceedings of the Journées 2014 “Systèmes de référence spatio-temporels”, p. 243.Google Scholar
Pitjeva, E., & Pitjev, N. 2018a, Astron. Lett. 44, 554 CrossRefGoogle Scholar
Pitjeva, E., & Pitjev, N. 2018b, Cel. Mech. Dyn. Astr, 130, 57 CrossRefGoogle Scholar
Pitjeva, E., Pitjev, N. 2019, Astron. Lett. 45, 855 CrossRefGoogle Scholar
Pitjeva, E., Pitjev, N., Pavlov, D., Turygin, S. 2021, A&A 647, A141 Google Scholar
Qiao, R., Yan, Y., Shen, K. et al. 2007. MNRAS, 376, 1707.CrossRefGoogle Scholar
Qiao, R., Zhang, H., Dourneau, G. et al. 2014. MNRAS, 440, 3749.CrossRefGoogle Scholar
Wang, N., Peng, Q., Peng, H. et al. 2017. MNRAS, 468, 1415.CrossRefGoogle Scholar
Xie, H., Peng, Q., Wang, N. et al. 2019. Planetary and Space Science, 165, 110.CrossRefGoogle Scholar