Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T23:04:15.321Z Has data issue: false hasContentIssue false

Planet migration and magnetic torques

Published online by Cambridge University Press:  27 October 2016

A. Strugarek
Affiliation:
Université de Montréal, C.P. 6128 Succ. Centre-Ville, Montréal, QC H3C-3J7, Canada email: [email protected] CEA-Saclay, IRFU/SAp, Gif-sur-Yvette, France
A. S. Brun
Affiliation:
CEA-Saclay, IRFU/SAp, Gif-sur-Yvette, France
S. P. Matt
Affiliation:
Department of Physics & Astronomy, University of Exter, EX2 4QL, UK
V. Reville
Affiliation:
CEA-Saclay, IRFU/SAp, Gif-sur-Yvette, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The possibility that magnetic torques may participate in close-in planet migration has recently been postulated. We develop three dimensional global models of magnetic star-planet interaction under the ideal magnetohydrodynamic (MHD) approximation to explore the impact of magnetic topology on the development of magnetic torques. We conduct twin numerical experiments in which only the magnetic topology of the interaction is altered. We find that magnetic torques can vary by roughly an order of magnitude when varying the magnetic topology from an aligned case to an anti-aligned case. Provided that the stellar magnetic field is strong enough, we find that magnetic migration time scales can be as fast as ~100 Myr. Hence, our model supports the idea that magnetic torques may participate in planet migration for some close-in star-planet systems.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Cohen, O., Drake, J. J., Glocer, A., et al. 2014, ApJ, 790, 57 CrossRefGoogle Scholar
Cohen, O., Drake, J. J., Kashyap, V. L., Sokolov, I. V., & Gombosi, T. I. 2010, ApJ, 723, L64 Google Scholar
Cuntz, M., Saar, S. H., & Musielak, Z. E. 2000, ApJ, 533, L151 Google Scholar
Ip, W.-H., Kopp, A., & Hu, J.-H. 2004, ApJ, 602, L53 Google Scholar
Laine, R. O. & Lin, D. N. C. 2011, ApJ, 745, 2 Google Scholar
Lovelace, R. V. E., Romanova, M. M., & Barnard, A. W. 2008, MNRAS, 389, 1233 Google Scholar
Mathis, S., Alvan, L., & Remus, F. 2013, EAS Publications Series, 62, 323 Google Scholar
Matsakos, T., Uribe, A., & Königl, A. 2015, A&A, 578, A6 Google Scholar
Matt, S. P., MacGregor, K. B., Pinsonneault, M. H., & Greene, T. P. 2012, ApJL, 754, L26 Google Scholar
Mignone, A., Bodo, G., Massaglia, S., et al. 2007, ApJS, 170, 228 CrossRefGoogle Scholar
Réville, V., Brun, A. S., Matt, S. P., Strugarek, A., & Pinto, R. F. 2015, ApJ, 798, 116 Google Scholar
Strugarek, A., Brun, A. S., Matt, S. P., & Réville, V. 2014, ApJ, 795, 86 Google Scholar
Strugarek, A., Brun, A. S., Matt, S. P., & Réville, V. 2015, Submitted to ApJGoogle Scholar