Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-29T18:18:40.383Z Has data issue: false hasContentIssue false

Planet formation in action: resolved gas and dust images of a transitional disk and its cavity

Published online by Cambridge University Press:  06 January 2014

Nienke van der Marel
Affiliation:
Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands
Ewine F. van Dishoeck
Affiliation:
Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands Max-Planck-Institut f{ü}r Extraterrestrische Physik Giessenbachstrasse 1, 85748 Garching, Germany
Simon Bruderer
Affiliation:
Max-Planck-Institut f{ü}r Extraterrestrische Physik Giessenbachstrasse 1, 85748 Garching, Germany
Til Birnstiel
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
Paola Pinilla
Affiliation:
Heidelberg University, Center for Astronomy, Institute for Theoretical Astrophysics, Albert Ueberle Str. 2, 69120, Heidelberg, Germany
Cornelis P. Dullemond
Affiliation:
Heidelberg University, Center for Astronomy, Institute for Theoretical Astrophysics, Albert Ueberle Str. 2, 69120, Heidelberg, Germany
Tim A. van Kempen
Affiliation:
Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands Joint ALMA Offices, Av. Alonso de Cordova, Santiago, Chile
Markus Schmalzl
Affiliation:
Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands
Joanna M. Brown
Affiliation:
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
Gregory J. Herczeg
Affiliation:
Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Hai Dian Qu, 100871 Beijing, PR China
Geoffrey S. Mathews
Affiliation:
Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden, The Netherlands
Vincent Geers
Affiliation:
Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Planet formation and clearing of protoplanetary disks is one of the long standing problems in disk evolution theory. The best test of clearing scenarios is observing systems that are most likely to be actively forming planets: the transitional disks with large inner dust cavities. We present the first results of our ALMA (Atacama Large Millimeter/submillimeter Array) Cycle 0 program using Band 9, imaging the Herbig Ae star Oph IRS 48 in CO 6−5 and the submillimeter continuum in the extended configuration. The resulting ~0.2″ spatial resolution completely resolves the cavity of this disk in the gas and the dust. The gas cavity of IRS 48 is half as large as the dust cavity, ruling out grain growth and photoevaporation as the primary cause of the truncation. On the other hand, the continuum emission reveals an unexpected large azimuthal asymmetry and steep edges in the dust distribution along the ring, suggestive of dust trapping. We will discuss the implications of the combined gas and dust distribution for planet formation at a very early stage. This is one of the first transition disks with spatially resolved gas inside the cavity, demonstrating the superb capabilities of the Band 9 receivers.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Birnstiel, T., Dullemond, C. P., & Brauer, F. 2010, A&A, 513, A79Google Scholar
Birnstiel, T., Dullemond, C. P., & Pinilla, P. 2013, A&A, 550, L8Google Scholar
Brown, J. M., Herczeg, G. J., Pontoppidan, K. M. & van Dishoeck, E. F. 2012, ApJ, 744, 116CrossRefGoogle Scholar
Brown, J. M., Rosenfeld, K. A., Andrews, S. M., Wilner, D. J. & van Dishoeck, E. F. 2012, ApJ, 758, 30CrossRefGoogle Scholar
Bruderer, S., van der Marel, N., van Dischoeck, E. F., & van Kempen, T. A., 2013, A&A, submittedGoogle Scholar
Casassus, S., van der Plas, G., M, S. P., Dent, W. R. F., Fomalont, E., Hagelberg, J., et al. 2013, Nature, 493, 191CrossRefGoogle Scholar
Geers, V. C., Pontoppidan, K. M., van Dishoeck, E. F., Dullemond, C. P., Augereau, J.-C., et al. 2007, A&A, 469, L35Google Scholar
Najita, J. R., Strom, S. E., & Muzerolle, J., 2007, MNRAS, 378, 369CrossRefGoogle Scholar
Pinilla, P., Benisty, M., & Birnstiel, T., 2012, A&A, 545, A81Google Scholar
van der Marel, N., vanDishoeck, E. F. Dishoeck, E. F., Bruderer, S., Birnstiel, T., Pinilla, P., et al. 2013, Science, 340, 1199Google Scholar
Williams, J. & Cieza, L. 2011, ARAA, 49, 67CrossRefGoogle Scholar
Weidenschilling, S. J. 1977, MNRAS, 180, 57CrossRefGoogle Scholar