Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T08:36:55.353Z Has data issue: false hasContentIssue false

The physics of galaxy evolution with SPICA observations

Published online by Cambridge University Press:  29 March 2021

Luigi Spinoglio
Affiliation:
Istituto di Astrofisica e Planetologia Spaziali - INAF, Rome, Via Fosso del Cavaliere 100, 00133, Roma, Italia emails: [email protected], [email protected], [email protected]
Juan A. Fernández-Ontiveros
Affiliation:
Istituto di Astrofisica e Planetologia Spaziali - INAF, Rome, Via Fosso del Cavaliere 100, 00133, Roma, Italia emails: [email protected], [email protected], [email protected]
Sabrina Mordini
Affiliation:
Istituto di Astrofisica e Planetologia Spaziali - INAF, Rome, Via Fosso del Cavaliere 100, 00133, Roma, Italia emails: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The evolution of galaxies at Cosmic Noon (1 < z < 3) passed through a dust-obscured phase, during which most stars formed and black holes in galactic nuclei started to shine, which cannot be seen in the optical and UV, but it needs rest frame mid-to-far IR spectroscopy to be unveiled. At these frequencies, dust extinction is minimal and a variety of atomic and molecular transitions, tracing most astrophysical domains, occur. The Space Infrared telescope for Cosmology and Astrophysics (SPICA), currently under evaluation for the 5th Medium Size ESA Cosmic Vision Mission, fully redesigned with its 2.5-m mirror cooled down to T < 8K will perform such observations. SPICA will provide for the first time a 3-dimensional spectroscopic view of the hidden side of star formation and black hole accretion in all environments, from voids to cluster cores over 90% of cosmic time. Here we outline what SPICA will do in galaxy evolution studies.

Type
Contributed Papers
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

André, Ph., et al. 2019, PASA, 36, e029 CrossRefGoogle Scholar
Baldwin, J. A., Phillips, M. M., Terlevich, R., et al. 1981, PASP, 93, 5 CrossRefGoogle Scholar
Bouwens, R. R., et al. 2007, ApJ, 670, 928 CrossRefGoogle Scholar
Delvecchio, I., et al. 2014, MNRAS, 439, 2736 CrossRefGoogle Scholar
Eisenstein, D. J., et al. 2011, AJ, 142, 72 CrossRefGoogle Scholar
Fernández-Ontiveros, J. A., et al. 2016, ApJS, 226, 19 CrossRefGoogle Scholar
Fernández-Ontiveros, J. A., et al. 2017, PASA, 34, e053 CrossRefGoogle Scholar
González-Alfonso, E., et al. 2017, PASA, 34, e054 CrossRefGoogle Scholar
Gruppioni, C., et al. 2013, MNRAS, 432, 23 CrossRefGoogle Scholar
Gruppioni, C., et al. 2017, PASA, 34, e055 CrossRefGoogle Scholar
Kaneda, H., et al. 2017, PASA, 34, e059 CrossRefGoogle Scholar
Kaneda, H., et al. 2018, Proceedings of the SPIE, Volume 10698, id. 106980CGoogle Scholar
Le Floc’h, E., et al. 2005, ApJ, 632, 169 CrossRefGoogle Scholar
Madau, P. & Dickinson, M. 2014, ARA&A, 52, 415 Google Scholar
Mullaney, J. R., et al. 2011, MNRAS, 414, 1082 CrossRefGoogle Scholar
Onodera, M., et al. 2016, ApJ, 822, 42 CrossRefGoogle Scholar
Roelfsema, P. R., et al. 2018, PASA, 35, e030 CrossRefGoogle Scholar
Spinoglio, L. & Malkan, M. A. 1992, ApJ, 399, 504 CrossRefGoogle Scholar
Spinoglio, L., et al. 2017, PASA, 34, e057 CrossRefGoogle Scholar