Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T02:26:03.108Z Has data issue: false hasContentIssue false

Physics in Ultra-Strong Magnetic Fields

Published online by Cambridge University Press:  27 February 2023

Alice K. Harding*
Affiliation:
Theoretical Division, Los Alamos National Laboratory Los Alamos, NM 87545 USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Several populations of neutron stars have surface magnetic fields above the critical strength of 4.4 × 1013 G where the electron cyclotron energy equals its rest mass. These include high-field rotation-powered pulsars, X-ray dim isolated neutron stars (XDIN), and magnetars. In such ultra-strong fields, quantum effects in physical processes as well as additional exotic Quantum Electrodynamic processes only occurring at these high field strengths have a significant influence on the emitted radiation. Although very strong magnetic fields play a critical role both inside and outside of neutron stars, I will review primarily processes that operate in the neutron star magnetospheres and how they influence the observed radiation.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of International Astronomical Union

References

Adler, S. L. 1971, Ann. Phys. 67, 599 CrossRefGoogle Scholar
Barchas, J. A., Hu, K. & Baring, M. G. 2021, MNRAS 500, 5369 CrossRefGoogle Scholar
Baring, M. G. & Harding, A. K. 1998, ApJ 507, L55 CrossRefGoogle Scholar
Baring, M. G. & Harding, A. K. 2001, ApJ 547, 929 CrossRefGoogle Scholar
Baring, M. G., Gonthier, P. L. & Harding, A. K. 2005, ApJ 630, 430 CrossRefGoogle Scholar
Baring, M. G. & Harding, A. K. 2007, Ap & SS 308, 109 CrossRefGoogle Scholar
Baring, M. G., Wadiasingh, Z. & Gonthier, P. L. 2011, ApJ 733, 61 CrossRefGoogle Scholar
Beloborodov, A. 2013, ApJ 762, 13 CrossRefGoogle Scholar
Bilous, A. V. et al. 2019, ApJ 887, L23 CrossRefGoogle Scholar
Canuto, V., Lodenquai, J. & Ruderman, M. 1971, PhRvD 3, 2303 Google Scholar
Daugherty, J. K. & Ventura, J. 1978 Phys. Rev. D 18 1053 Google Scholar
Daugherty, J. K. & Harding, A. K. 1983 Astrophys. J. 273 761 CrossRefGoogle Scholar
Daugherty, J. K. & Harding, A. K. 1986, ApJ 309, 362 CrossRefGoogle Scholar
Daugherty, J. K. & Harding, A. K. 1989, ApJ 336, 86 CrossRefGoogle Scholar
Erber, T. 1966 Rev. Mod. Phys. 38 626 Google Scholar
Fernandez, R. & Davis, S. W. 2011, ApJ 730, 131 CrossRefGoogle Scholar
Fleischhack, H. 2021, arXiv:2108.02860Google Scholar
Geprägs, R. et al. 1994, Phys. Rev. D 49, 5582.CrossRefGoogle Scholar
Gonthier, P. L., Harding, A. K., Baring, M. G., et al. 2000, ApJ, 540, 907 CrossRefGoogle Scholar
Gonthier, P. L., Baring, M. G., Eiles, M. T., et al. 2014, PhRvD 90, 043014 Google Scholar
Gonzalez Caniulef, D., Zane, S, Taverna, R., Turolla, R. & Wu, K. 2016, MNRAS 459, 3585 CrossRefGoogle Scholar
Graziani, C. 1993 Astrophys. J. 412 351 CrossRefGoogle Scholar
Harding, A. K. & Preece, R. D. 1987 Astrophys. J. 319 939 CrossRefGoogle Scholar
Harding, A. K. & Daugherty, J. K. 1991 Astrophys. J. 374 687 CrossRefGoogle Scholar
Harding, A. K., Baring, M. G., & Gonthier, P. L. 1997, ApJ 476, 246 CrossRefGoogle Scholar
Harding, A. K., Contopoulos, I., & Kazanas, D. 1999, ApJL 525, L125 CrossRefGoogle Scholar
Harding, A. K., & Lai, D. 2006, Reports on Progress in Physics, 69, 2631 CrossRefGoogle Scholar
Heyl, J. S. & Shaviv, N. J. 2000, MNRAS 311, 555 CrossRefGoogle Scholar
Heyl, J. S., Shaviv, N. J. & Lloyd, D. 2003 Mon. Not. R. Astron. Soc. 342 134 CrossRefGoogle Scholar
Ho, W. C. G. & Lai, D. 2001 Mon. Not. R. Astron. Soc. 327 1081 CrossRefGoogle Scholar
Ho, W. C. G. & Lai, D. 2003 Mon. Not. R. Astron. Soc. 338 233 CrossRefGoogle Scholar
Hu, K., Baring, M. B., Wadiasingh, Z. & Harding, A. K. 2019, MNRAS Google Scholar
Johnson, M. H., & Lippmann, B. A. 1949, PhRv 76, 828 Google Scholar
Kalapotharakos, C., Wadiasingh, Z., Harding, A. K. & Kazanas, D. 2021, ApJ 907, 63 CrossRefGoogle Scholar
Kouveliotou, C., Dieters, S., Strohmayer, T., et al. 1998, Nature 393, 235 CrossRefGoogle Scholar
Lai, D. & Ho, W. C. G. 2002, Astrophys. J. 566 373 CrossRefGoogle Scholar
Mignani, R. P. et al. 2017, MNRAS 465, 492 CrossRefGoogle Scholar
Melrose, D. B. & Parle, A. J. 1983 Aust. J. Phys. 36 775 CrossRefGoogle Scholar
Mushtukov, A. A., Nagirner, D. I., & Poutanen, J. 2016, PhRvD 93, 105003 Google Scholar
Nobili, L., Turolla, R., & Zane, S. 2008a MNRAS 386, 1527 CrossRefGoogle Scholar
Nobili, L., Turolla, R., & Zane, S. 2008b MNRAS 389, 989 CrossRefGoogle Scholar
Özel, F. 2001 Astrophys. J. 563 276 CrossRefGoogle Scholar
Sina, R. Ph.D. thesis, University of Maryland, 1996 Google Scholar
Sokolov, A. A., & Ternov, I. M. 1968, Synchrotron Radiation (Oxford: Pergamon)Google Scholar
Tomsick, J. A., Boggs, S. E., Zoglauer, A., et al. 2021, arXiv e-prints, arXiv:2109.10403.Google Scholar
Tsai, W. Y. & Erber, T. 1975 Phys. Rev. D 12 1132 CrossRefGoogle Scholar
van Adelsberg, M. & Lai, D. 2006, MNRAS 373, 1495 CrossRefGoogle Scholar
Wadiasingh, Z., Baring, M. G., Gonthier, P. L., & Harding, A. K. 2018, ApJ 854, 98 CrossRefGoogle Scholar
Wadiasingh, Z. et al. 2019, Astro2020: Decadal Survey on Astronomy and Astrophysics, science white papers, no. 292; Bulletin of the American Astronomical Society, Vol. 51, Issue 3, id. 292Google Scholar
Wadiasingh, Z., Baring, M. G., Harding, A. K., Gonthier, P. L., Hu, K. & Younes, G. 2022, ApJ, in prep.Google Scholar
Weisskopf, M. C. et al. 2021, eprint arXiv:2112.01269Google Scholar
Zane, S., Turolla, R., Stella, L. & Treves, A. 2001 Astrophys. J. 560 384 CrossRefGoogle Scholar