Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T18:58:42.506Z Has data issue: false hasContentIssue false

A phenomenological approach to the evolution of galaxies

Published online by Cambridge University Press:  17 July 2013

Simon J. Lilly
Affiliation:
Institute of Astronomy, ETH Zurich, 8093 Zurich, Switzerland
Yingjie Peng
Affiliation:
Institute of Astronomy, ETH Zurich, 8093 Zurich, Switzerland
Marcella Carollo
Affiliation:
Institute of Astronomy, ETH Zurich, 8093 Zurich, Switzerland
Alvio Renzini
Affiliation:
INAF Osservatorio Astronomico di Padova, vicolo dell'Osservatorio 5, I-35122 Padova, Italy, and Department of Physics and Astronomy Galileo Galilei, Universita degli Studi di Padova, via Marzolo 8, I-35131Padova, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Increasingly good statistical data on the galaxy population at high and low redshift enable the development of new phenomenological approaches to galaxy evolution based on application of the simplest continuity equations. This has given new insights into the different ways in which star-formation in galaxies is quenched, the role of merging in the population, and in to the control of star-formation in star-forming galaxies and the links with chemical evolution. The continuity approach provides a self-consistent view of the evolving population and exposes linkages between different aspects of galaxy evolution.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Andrews, B. H. & Martini, P. 2012, arXiv:1211.3418.Google Scholar
Baldry, I. K., et al. 2012, MNRAS, 421, 621.Google Scholar
Bouche, N., et al. 2010, ApJ, 718.Google Scholar
Daddi, E.et al. 2007, ApJ, 670, 156.CrossRefGoogle Scholar
Dave, R., Finlator, K., & Oppenheimer, B. D., 2012, MNRAS, 421, 98.Google Scholar
Elbaz, D.et al., 2007, A&A, 468, 33.Google Scholar
Ellison, S. L. & et al., 2008, ApJL 672 L107.CrossRefGoogle Scholar
Erb, D. & et al., 2006, ApJ, 647, 128.Google Scholar
Genzel, et al. 2010, MNRAS, 407, 2091.CrossRefGoogle Scholar
Gonzalez, V., et al. 2010, ApJ, 713, 115.Google Scholar
Ilbert, O. & et al., 2010, ApJ, 709, 644.Google Scholar
Ilbert, O., et al. 2013, arXiv1301.3157.Google Scholar
Kewley, L. J. & Dopita, M. A. 2002, ApJS, 142, 35.Google Scholar
Knobel, C., et al. 2012, arXiv1211.5607Google Scholar
Lara-Lopez, M. A., et al. 2010, A&A 521 L53.Google Scholar
Lilly, S. J., et al. 2013, ApJ, submitted.Google Scholar
Lotz, J., et al. 2011, ApJ, 742, 103.Google Scholar
Mannucci, F., et al. 2010, MNRAS, 408, 2115.CrossRefGoogle Scholar
Neistein, E. & Dekel, A. 2008, MNRAS, 388, 1792.Google Scholar
Noeske, K. G.et al. 2007, ApJ 660L 43.Google Scholar
Pannella, M., et al. 2009, ApJ 698 L116.CrossRefGoogle Scholar
Peeples, M. S. & Shankar, F., 2011 MNRAS, 417, 2962.Google Scholar
Peng, Y.-J., et al. 2010, ApJ 721 193 (P10)CrossRefGoogle Scholar
Peng, Y.-J. & et al., 2012, ApJ 757 4 (P12)CrossRefGoogle Scholar
Perez-Gonzalez, P. G. & et al., 2008, ApJ 675, 243.Google Scholar
Pozzetti, L. & et al., 2010, A&A, 523, 13.Google Scholar
Rodighiero, G. & et al., 2011, ApJ, 739, 40.CrossRefGoogle Scholar
Sargent, M., Bethermin, M., Daddi, E., & Elbaz, D., 2012, ApJ, 747, 31.Google Scholar
Schaerer, D., de Barros, S., & Sklias, P., 2012 arXiv:1207.3074.Google Scholar
Silverman, J. D. & et al., 2009, ApJ, 743, 2.Google Scholar
Stark, D. P., et al. 2012, arXiv:1208.3529.Google Scholar
Tacconi, L., et al. 2012, arXiv:1211.5743.Google Scholar
Tremonti, C. A.et al. 2004, ApJ, 613, 898.Google Scholar
Woo, J., et al. 2012, MNRAS, 428, 3306.Google Scholar
Yates, R. A. M., Kauffmann, G., & Guo, Q. 2011, MNRAS, 422, 215.Google Scholar