Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T19:44:35.192Z Has data issue: false hasContentIssue false

Phase connected X-ray light curve and He II radial velocity measurements of NGC 300 X-1

Published online by Cambridge University Press:  30 December 2019

S. Carpano
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, 85748 Garching, Germany emails: [email protected], [email protected]
F. Haberl
Affiliation:
Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, 85748 Garching, Germany emails: [email protected], [email protected]
P. Crowther
Affiliation:
Department of Physics and Astronomy & Space Physics, University of Sheffield, Sheffield S3 7RH, UK emails: [email protected], [email protected]
A. Pollock
Affiliation:
Department of Physics and Astronomy & Space Physics, University of Sheffield, Sheffield S3 7RH, UK emails: [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

. NGC 300 X-1 and IC 10 X-1 are currently the only two robust extragalactic candidates for being Wolf-Rayet/black hole X-ray binaries, the Galactic analogue being Cyg X-3. These systems are believed to be a late product of high-mass X-ray binary evolution and direct progenitors of black hole mergers. From the analysis of Swift data, the orbital period of NGC 300 X-1 was found to be 32.8 h. We here merge the full set of existing data of NGC 300 X-1, using XMM-Newton, Chandra and Swift observations to derive a more precise value of the orbital period of 32.7932 ± 0.0029 h above a confidence level of 99.99%. This allows us to phase connect the X-ray light curve of the source with radial velocity measurements of He II lines performed in 2010. We show that, as for IC 10 X-1 and Cyg X-3, the X-ray eclipse corresponds to maximum of the blueshift of the He II lines, instead of the expected zero velocity. This indicates that for NGC 300 X-1 as well, the wind of the WR star is completely ionised by the black hole radiation and that the emission lines come from the region of the WR star that is in the shadow. We also present for the first time the light curve of two recent very long XMM-Newton observations of the source, performed on the 16th to 20th of December 2016.

Type
Contributed Papers
Copyright
© International Astronomical Union 2019 

References

Binder, B., Williams, B. F., Eracleous, M., Garcia, M. R., Anderson, S. F. & Gaetz, T. J., 2011, ApJ, 742, 128 CrossRefGoogle Scholar
Bogomazov, A. I., 2014, Astronomy Reports, 58, 126 CrossRefGoogle Scholar
Bulik, T., Belczynski, K., Prestwich, A., 2011, ApJ, 730, 140 10.1088/0004-637X/730/2/140CrossRefGoogle Scholar
Carpano, S., Wilms, J., Schirmer, M. & Kendziorra, E., 2005, A&A, 443, 103 Google Scholar
Carpano, S., Pollock, A. M. T., Wilms, J., Ehle, M. & Schirmer, M., 2007a, A&A, 461, L9 Google Scholar
Carpano, S., Pollock, A. M. T., Prestwich, A., Crowther, P., Wilms, J., Yungelson, L. & Ehle, M., 2007b, A&A, 466, L17 Google Scholar
Crowther, P. A., Carpano, S., Hadfield, L. J. & Pollock, A. M. T., 2007, A&A, 469, L31 Google Scholar
Crowther, P. A., Barnard, R., Carpano, S., Clark, J. S., Dhillon, V. S. & Pollock, A. M. T., 2010, MNRAS, 403, L41 CrossRefGoogle Scholar
Garmire, G. P., Bautz, M. W., Ford, P. G., Nousek, J. A. & Ricker, G. R. Jr, 2003, Proc. SPIE, 4851, 28 Google Scholar
Hanson, M. M., Still, M. D. & Fender, R. P., 2000, ApJ, 541, 308 CrossRefGoogle Scholar
Laycock, S. G. T., Cappallo, R. C. & Moro, M. J., 2015a, MNRAS, 446, 1399 CrossRefGoogle Scholar
Laycock, S. G. T., Maccarone, T. J. & Christodoulou, D. M., 2015b, MNRAS, 452, L31 CrossRefGoogle Scholar
Lomb, N. R., 1976, A&Sp Sc., 39, 447 Google Scholar
Murray, S. S., Chappell, J. H., Kenter, A. T., Juda, M., Kraft, R. P., Zombeck, M. V., Meehan, G. R., Austin, G. K. & Gomes, J. J., 2000, Proc. SPIE, 4140, 144 Google Scholar
Orosz, J. A., McClintock, J. E., Narayan, R., Bailyn, C. D., Hartman, J. D., Macri, L., Liu, J., Pietsch, W., Remillard, R. A., Shporer, A. & Mazeh, T., 2007, Nature, 449, 872 CrossRefGoogle Scholar
Prestwich, A. H., Kilgard, R., Crowther, P. A., Carpano, S., Pollock, A. M. T., Zezas, A., Saar, S. H., Roberts, T. P. & Ward, M. J., 2007, ApJL, 669, L21 10.1086/523755CrossRefGoogle Scholar
Scargle, J. D., 1982, ApJ, 263, 835 CrossRefGoogle Scholar
Silverman, J. M. & Filippenko, A. V., 2008, ApJL, 678, L17 CrossRefGoogle Scholar
Strüder, L., Briel, U., Dennerl, K., Hartmann, R., Kendziorra, E., Meidinger, N. et al., 2001, A&A, 365, L18 Google Scholar
Turner, M. J. L., Abbey, A., Arnaud, M., Balasini, M., Barbera, M., Belsole, E., Bennie, et al., 2001, A&A, 365, L27 Google Scholar
van Kerkwijk, M. H., 1993, A&A, 276, L9 Google Scholar
van Kerkwijk, M. H., Geballe, T. R., King, D. L., van der Klis, M. & van Paradijs, J., 1996, A&A, 314, 521 Google Scholar