Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T05:49:43.810Z Has data issue: false hasContentIssue false

Period–Luminosity–Metallicity relations for Classical Pulsators at Near-infrared Wavelengths

Published online by Cambridge University Press:  06 February 2024

Anupam Bhardwaj*
Affiliation:
INAF - Osservatorio Astronomico di Capodimonte, Via Moiariello 16, 80131, Napoli, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Classical pulsating stars such as Cepheid and RR Lyrae variables exhibit well-defined Period–Luminosity relations at near-infrared wavelengths. Despite their extensive use as stellar standard candles, the effects of metallicity on Period–Luminosity relations for these pulsating variables, and in turn, on possible biases in distance determinations, are not well understood. We present ongoing efforts in determining accurate and precise metallicity coefficients of Period–Luminosity-Metallicity relations for classical pulsators at near-infrared wavelengths. For Cepheids, it is crucial to obtain a homogeneous sample of photometric light curves and high-resolution spectra for a wide range of metallicities to empirically determine metallicity coefficient and reconcile differences with the predictions of the theoretical models. For RR Lyrae variables, using their host globular clusters covering a wide range of metallicities, we determined the most precise metallicity coefficient at near-infrared wavelengths, which is in excellent agreement with the predictions of the horizontal branch evolution and stellar pulsation models.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Baumgardt, H., Vasiliev, E., 2021, MNRAS, 505, 5957 Google Scholar
Berdnikov, L. N., 2008, VizieR Online Data Catalog, 2285, 0Google Scholar
Bhardwaj, A., 2020, Journal of Astrophysics and Astronomy, 41, 23 Google Scholar
Bhardwaj, A., 2022, Universe, 8, 122 Google Scholar
Bhardwaj, A., et al., 2015, MNRAS. 447, 3342 Google Scholar
Bhardwaj, A., et al., 2016, AJ, 151, 88 Google Scholar
Bhardwaj, A., et al., 2017a, AJ, 153, 154 Google Scholar
Bhardwaj, A., et al., 2017b, MNRAS, 466, 2805 Google Scholar
Bhardwaj, A., et al., 2021a, ApJ, 909, 200 Google Scholar
Bhardwaj, A., et al., 2021b, ApJ, 922, 20 Google Scholar
Bhardwaj, A., et al., 2022, A&A, 668, A59 Google Scholar
Bhardwaj, A., et al., 2023, ApJL, 944, L51 Google Scholar
Bono, G., et al., 2001, ApJ, 563, 319 Google Scholar
Bono, G., et al., 2003, MNRAS, 344, 1097 Google Scholar
Bono, G., et al., 2010, ApJ, 715, 277 Google Scholar
Borissova, J., et al., 2009, A&A, 502, 505 Google Scholar
Braga, V. F., et al., 2018, AJ, 155, 137 Google Scholar
Braga, V. F., et al., 2019, A&A, 625, A1 CrossRefGoogle Scholar
Braga, V. F., et al., 2022, MNRAS, 517, 5368 Google Scholar
Breuval, L., et al., 2022, ApJ, 939, 89 Google Scholar
Cardelli, J. A., Clayton, G. C., Mathis, J. S., 1989, ApJ, 345, 245 Google Scholar
Carretta, E., et al., 2009, A&A, 508, 695 Google Scholar
Catelan, M., 2009, AP&SS, 320, 261 Google Scholar
Catelan, M., Pritzl, B. J., Smith, H. A., 2004, ApJS, 154, 633 Google Scholar
Crestani, J., et al., 2021, ApJ, 914, 10 Google Scholar
Dambis, A. K., et al., 2013, MNRAS, 435, 3206 Google Scholar
Das, S., et al., 2021, MNRAS, 501, 875 Google Scholar
Di Criscienzo, M., et al., 2007, A&A, 471, 893 Google Scholar
Dias, B., et al., 2016, A&A, 590, A9 Google Scholar
Freedman, W. L., et al., 2001, ApJ, 553, 47 Google Scholar
Genovali, K., et al., 2014, A&A, 566, A37 Google Scholar
Genovali, K., et al., 2015, A&A, 580, A17 Google Scholar
Gieren, W., et al., 2018, A&A, 620, A99 Google Scholar
Green, G. M., et al., 2019, ApJ, 887, 93 Google Scholar
Groenewegen, M. A. T., 2018, A&A, 619, A8 Google Scholar
Harris, W. E., 2010, arXiv:1012.3224, p. arXiv:1012.3224Google Scholar
Inno, L., et al., 2015, A&A, 576, A30 Google Scholar
Kovtyukh, V., et al., 2018, MNRAS, 477, 2276 Google Scholar
Lindegren, L., et al., 2021, A&A, 649, A2 Google Scholar
Luck, R. E., 2018, AJ, 156, 171 Google Scholar
Maas, T., Giridhar, S., Lambert, D. L., 2007, ApJ, 666, 378 Google Scholar
Madore, B. F., 1982, ApJ, 253, 575 Google Scholar
Marconi, M., Minniti, D., 2018, ApJL, 853, L20 Google Scholar
Marconi, M., et al., 2015, ApJ, 808, 50 Google Scholar
Matsunaga, N., et al., 2006, MNRAS, 370, 1979 Google Scholar
Muhie, T. D., et al., 2021, MNRAS, 502, 4074 Google Scholar
Muraveva, T., et al., 2015, ApJ, 807, 127 Google Scholar
Muraveva, T., et al., 2018, MNRAS, 481, 1195 Google Scholar
Navarrete, C., et al., 2017, A&A, 604, A120 Google Scholar
Neeley, J. R., et al., 2019, MNRAS, 490, 4254 Google Scholar
Ngeow, C.-C., et al., 2022, AJ, 164, 154 Google Scholar
Collaboration, Planck et al., 2020, A&A, 641, A6 Google Scholar
Pritzl, B. J., et al., 2003, AJ, 126, 1381 Google Scholar
Recio-Blanco, A., et al., 2022, arXiv e-prints, p. arXiv:2206.05541Google Scholar
Riess, A. G., et al., 2021, ApJL, 908, L6 Google Scholar
Riess, A. G., et al., 2022, ApJL, 934, L7 Google Scholar
Ripepi, V., et al., 2014, MNRAS, 437, 2307 Google Scholar
Ripepi, V., et al., 2021, MNRAS, 508, 4047 CrossRefGoogle Scholar
Ripepi, V., et al., 2022, arXiv e-prints, p. arXiv:2206.06212Google Scholar
Schlafly, E. F., Finkbeiner, D. P., 2011, ApJ, 737, 103 Google Scholar
Skrutskie, M. F., et al., 2006, AJ, 131, 1163 Google Scholar
Sollima, A., Cacciari, C., Valenti, E., 2006, MNRAS, 372, 1675 Google Scholar
Sollima, A., et al., 2008, MNRAS, 384, 1583 Google Scholar
Soszyński, I., et al., 2018, Acta Astron., 68, 89 Google Scholar
Stetson, P. B., 1996, PASP, 108, 851 Google Scholar
Subramanian, S., et al., 2017, Space Science Reviews, 212, 1817 Google Scholar
Wallerstein, G., 2002, PASP, 114, 689 Google Scholar
Wielgórski, P., et al., 2022, ApJ, 927, 89 CrossRefGoogle Scholar