Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T15:41:24.332Z Has data issue: false hasContentIssue false

The period-luminosity relations of red supergiants

Published online by Cambridge University Press:  06 February 2024

Biwei Jiang*
Affiliation:
Institute for Frontiers in Astronomy and Astrophysics, Beijing Normal University, Beijing 102206, China Department of Astronomy, Beijing Normal University, Beijing 100875, China
Yi Ren
Affiliation:
College of Physics and Electronic Engineering, Qilu Normal University, Jinan 250200, China
Ming Yang
Affiliation:
National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Red supergiants (RSGs) are the brightest stars in the near-infrared. The existence of their period-luminosity relation (PLR) will be very helpful in determining cosmological distances. This review discusses the development in identification of RSGs, calculation of their light variation period, determination of the PLR, and the uncertainties associated. It is found that the PLR of RSGs exhibits the smallest scatter in the near-infrared, in particular within the PMK relation. The PLRs in the LMC, SMC, M31, and M33 show no obvious dependence on the galactic metallicity, which follows approximately the relation as MK ≈ −3.1 log P – 1.9.

Type
Contributed Paper
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Bessell, M. S. & Brett, J. M. 1988, PASP, 100, 1134 Google Scholar
Bouvier, J. 2013, EAS Publications Series, 143Google Scholar
Catchpole, R. M. & Feast, M. W. 1981, MNRAS, 197, 385 Google Scholar
Chatys, Filip W., Bedding, Timothy R., Murphy, S. et al. 2019, MNRAS, 487, 4832 Google Scholar
Collier Cameron, A. 1999, Solar and Stellar Activity: Similarities and Differences, 146Google Scholar
Donati, J.-F., Brown, S. F., Semel, M., et al. 1992, A&A, 265, 682 Google Scholar
Ekström, S., Georgy, C., Eggenberger, P., et al. 2012, A&A, 537, A146.Google Scholar
Feast, M. W., Catchpole, R. M, Carter, B. S, et al. 1980, MNRAS, 193, 377 Google Scholar
Freytag, B., Steffen, M. & Dorch, B. 2002, AN, 323, 213 Google Scholar
Gehrz, R. 1989, IAUS, 135, 445 Google Scholar
Glass, I. S. 1979, MNRAS, 186, 317 Google Scholar
Guo, J. H. & Li, Y. 2002, A&A, 565, 559 Google Scholar
Kinman, T. D., Mould, J. R. & Wood, P. R. 1987, AJ, 93, 833 Google Scholar
Kiss, L. L., Szabó, Gy. M., Bedding, T. R. 2006, MNRAS, 372, 1721Google Scholar
Kochanek, C. S., Beacom, J. F., Kistler, M. D., et al. 2008, ApJ, 684, 1336.Google Scholar
Li, Y. & Gong, Z. G. 1994, A&A, 289, 449 Google Scholar
Massey, P. 1998, ApJ, 501, 153.Google Scholar
Massey, Philip, Olsen, K. A. G., Hodge, Paul W. et al. 2006, AJ, 131, 2478 Google Scholar
Messineo, M. & Brown, A. G. A. 2019, AJ, 158, 20 Google Scholar
Neugent, Kathryn F., Levesque, Emily M., Massey, Philip et al. 2020, ApJ, 900, 118 Google Scholar
Patrick, L. R., Thilker, D., Lennon, D. J.et al. 2022, MNRAS, 513, 5847Google Scholar
Pierce, M. J., Jurcevic, J. S. & Crabtree, D. 2000, MNRAS, 313, 271 Google Scholar
Ramrez, Iván & Meléndez, Jorge 2005, ApJ, 626, 465 Google Scholar
Ren, Yi & Jiang, Biwei 2020, ApJ, 898, 24 Google Scholar
Ren, Yi, Jiang, Biwei, Yang, Ming et al. 2019, ApJS, 241, 35 Google Scholar
Ren, Yi, Jiang, Biwei, Yang, Ming et al. 2021a, ApJ, 907, 18 Google Scholar
Ren, Yi, Jiang, Biwei, Yang, Ming et al. 2021b, ApJ, 923, 232 Google Scholar
Sana, H., de Mink, S. E., de Koter, A., et al. 2012, Science, 337, 444 Google Scholar
Schwarzschild, M. 1975, ApJ, 195, 137 Google Scholar
Soraisam, Monika D., Bildsten, Lars, Drout, Maria R. et al. 2018, ApJ, 859, 73 Google Scholar
Stothers, Richard 1969, ApJ, 156, 541 Google Scholar
Trumpler, Robert Julius 1930, Lick Observatory Bulletin, 420, 154Google Scholar
Yoon, S., & Cantiello, M. 2010, ApJ, 717, 62 Google Scholar
Wilson, Ralph E. and Merrill, Paul W. 1942, ApJ, 95, 248 Google Scholar
Wood, P. R., Bessell, M. S. & Fox, M. W. 1983, ApJ, 272, 99 Google Scholar
Yang, Ming & Jiang, B. W. 2011, ApJ, 727, 53 Google Scholar
Yang, Ming & Jiang, B. W. 2012, ApJ, 754, 35 Google Scholar
Yang, Ming, Bonanos, Alceste Z., & Jiang, Biwei et al. 2019, A&A, 629, 91 Google Scholar
Yang, Ming, Bonanos, Alceste Z., & Jiang, Biwei et al. 2021, A&A, 646, 141 Google Scholar
Zhang, Zehao, Jiang, Biwei, Ren, Yi et al. 2022, ApJ, 928, 139 Google Scholar
Bouvier, J. 2013, EAS Publications Series, 143Google Scholar
Collier Cameron, A. 1999, Solar and Stellar Activity: Similarities and Differences, 146Google Scholar
Donati, J.-F., Brown, S. F., Semel, M., et al. 1992, A&A, 265, 682 Google Scholar
Shappee, B. J., Prieto, J. L., Grupe, D., et al. 2014, ApJ, 788, 48 Google Scholar
Kochanek, C. S., Shappee, B. J., Stanek, K. Z., et al. 2017, PASP, 129, 104502 Google Scholar
Jayasinghe, T., Stanek, K. Z., Kochanek, C. S., et al. 2020, MNRAS, 491, 13 Google Scholar
Udalski, A., Szymański, M. K., & Szymański, G. 2015, AcA, 65, 1 Google Scholar
Soszyński, I., Udalski, A., Szymański, M. K., et al. 2015, AcA, 65, 297 Google Scholar
Soszyński, I., Dziembowski, W. A., Udalski, A., et al. 2007, AcA, 57, 201 Google Scholar