Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T21:01:28.109Z Has data issue: false hasContentIssue false

Pattern recognition techniques in Polarimetry

Published online by Cambridge University Press:  24 July 2015

Arturo López Ariste*
Affiliation:
IRAP, Toulouse, France email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sparsity is a property of data by which it can be represented using a small number of patterns. It is the key concept behind an evergrowing list of mathematical techniques for handling data and recover from it signals or information in conditions previously thought impossible. The application of those techniques to spectropolarimetric data is relatively straightforward. We present three examples of such application: the use of Principal Component Analysis to invert the magnetic field in solar prominences from spectropolarimetry of the He D3 line, the removal of fringes from spectropolarimetric data with Relevance Vector Machines, and the retrieval of high resolution spectra from low resolution data with Compressed Sensing.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Aulanier, G. & Démoulin, P. 1998, ApJ 703, 114 Google Scholar
Asensio Ramos, A. & López Ariste, A. 2010, A&A 509, A49 Google Scholar
Asensio Ramos, A. & Manso Sainz, R. 2012, A&A 547, A113 Google Scholar
Borrero, J. M., Lites, B. W., Lagg, A., Rezaei, R., & Rempel, M. 2014, A&A 572, A54 Google Scholar
Candes, E., Romberg, J., & Tao, T. 2006, IEEE Transactions on Information Theory 52, 489 CrossRefGoogle Scholar
Casini, R., Judge, P. G., & Schad, T. A. 2012, ApJ 756, 194 CrossRefGoogle Scholar
Labrosse, N., Heinzel, P., Vial, J.-C., Kucera, T., Parenti, S., Gunár, S., Schmieder, B., & Kilper, G. 2014, Space Science Review 151, 243 CrossRefGoogle Scholar
López Ariste, A. & Casini, R. 2002, ApJ 575, 529 CrossRefGoogle Scholar
López Ariste, A., Asensio Ramos, A., Manso Sainz, R., Derouich, M., & Gelly, B. 2009, A&A 501, 729 Google Scholar
López Ariste, A. 2015, in: Vial, J.-C. & Engvold, O. (eds.), Solar Prominences, Astrophysics and Space Science Library 415. (Springer International Publishing Switzerland), p. 179.Google Scholar
López Ariste, A. & Asensio Ramos, A. 2015, A&A. In preparationGoogle Scholar
Mackay, D. H., Karpen, J. T., Ballester, J. L., Schmieder, B., & Aulanier, G. 2010, Space Science Review 151, 333 CrossRefGoogle Scholar
Rees, D. E., López Ariste, A., Thatcher, J., & Semel, M. 2000, A&A 355, 759 Google Scholar
Rempel, M. 2012, ApJ 750, 62 CrossRefGoogle Scholar
Ruiz Cobo, B. & del Toro Iniesta, J. C. 1992, ApJ 398, 375 CrossRefGoogle Scholar
Schmieder, B., Tian, H., Kucera, T. et al. 2014, A&A 569, A85 Google Scholar
Skumanich, A. & López Ariste, A. 2002, ApJ 570, 379 CrossRefGoogle Scholar
Socas-Navarro, H., López Ariste, A., & Lites, B. W. 2001, ApJ 553, 949 CrossRefGoogle Scholar
Tipping, M. E. 2001, J. Mach. Learn. Res. 1, 211 Google Scholar