Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T19:24:04.707Z Has data issue: false hasContentIssue false

Particle acceleration in fast magnetic reconnection

Published online by Cambridge University Press:  08 June 2011

A. Lazarian
Affiliation:
Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St., Madison, WI, 53706, USA, email: [email protected]
G. Kowal
Affiliation:
Department of Astronomy of IAG, University of São Paulo, Rua do Matão, 1226, São Paulo, SP, 05508, Brazil Astronomical Observatory, Jagiellonian University, Orla 171, 30-244 Kraków, Poland
E. de Gouveia Dal Pino
Affiliation:
Department of Astronomy of IAG, University of São Paulo, Rua do Matão, 1226, São Paulo, SP, 05508, Brazil
E. Vishniac
Affiliation:
Department of Physics and Astronomy, McMaster University, 1280 Main St. W, Hamilton, ON, L8S 4M1, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Our numerical simulations show that the reconnection of magnetic field becomes fast in the presence of weak turbulence in the way consistent with the Lazarian & Vishniac (1999) model of fast reconnection. This process in not only important for understanding of the origin and evolution of the large-scale magnetic field, but is seen as a possibly efficient particle accelerator producing cosmic rays through the first order Fermi process. In this work we study the properties of particle acceleration in the reconnection zones in our numerical simulations and show that the particles can be efficiently accelerated via the first order Fermi acceleration.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Armstrong, J. W., Rickett, B. J., & Spangler, S. R., 1995, ApJ, 443, 209CrossRefGoogle Scholar
Beresnyak, A. & Lazarian, A. 2009, ApJ, 702, 460CrossRefGoogle Scholar
Biskamp, D. 1986 Physics of Fluids, 29, 15201531CrossRefGoogle Scholar
Ciaravella, A. & Raymond, J. C., 2008, ApJ, 686, 1372CrossRefGoogle Scholar
Chepurnov, A. & Lazarian, A. 2010, ApJ, 710, 853CrossRefGoogle Scholar
Daughton, W., Scudder, J., & Karimabadi, H., Physics of Plasmas, 072101-1-072101-15, 2006Google Scholar
de Gouveia Dal Pino, E. M., & Lazarian, A. 2003, arXiv:astro-ph/0307054 (preprint version of 2005, A&A, 441, 845-853)CrossRefGoogle Scholar
de Gouveia Dal Pino, E. M. & Lazarian, A., 2005, A&A, 441, 845Google Scholar
de Gouveia Dal Pino, E. M., Kowal, G., Kadowaki, L. H. S., Piovezan, P., & Lazarian, A., 2010, International Journal of Modern Physics D, 19, 729CrossRefGoogle Scholar
de Gouveia Dal Pino, E. M., Piovezan, P. P. & Kadowaki, L. H. S. 2010, A&A, 518, A5Google Scholar
Drake, J. F., 2001, Nature, 410, 525526CrossRefGoogle Scholar
Drake, J. F., Swisdak, M., Che, H., & Shay, M. A., 2006 Nature, 443, 553556CrossRefGoogle Scholar
Draine, B. T., & Lazarian, A. 1998, ApJ, 508, 157CrossRefGoogle Scholar
Elmegreen, B. G. & Scalo, J. 2004, ARA&A, 42, 211Google Scholar
Fox, D. B. et al. ., Nature, 437, 845850 (2005)CrossRefGoogle ScholarPubMed
Galama, T. J., et al. ., 1998, Nature, 395, 670672 (1998)CrossRefGoogle Scholar
Haverkorn, M., Brown, J. C., Gaensler, B. M., & McClure-Griffiths, N. M. 2008, ApJ, 680, 362CrossRefGoogle Scholar
Innes, D. E., Inhester, B., Axford, W. I., & Wilhelm, K., 1997, Nature, 386, 811813CrossRefGoogle Scholar
Kowal, G., Lazarian, A., Vishniac, E. T., & Otmianowska-Mazur, K. 2009, ApJ, 700, 63CrossRefGoogle Scholar
Lazarian, A. 2005, Magnetic Fields in the Universe: From Laboratory and Stars to Primordial Structures., 784, 42Google Scholar
Lazarian, A., Kowal, G., Vishniac, E. & de Gouveia dal Pino, E., 2010, Planet. Space Sci., doi:10.1016/j.pss.2010.07.020 (arXiv:astro-ph/1003.2637)Google Scholar
Lazarian, A., & Vishniac, E. T. 1999, ApJ, 517, 700718CrossRefGoogle Scholar
Lazarian, A., Vishniac, E. T., & Cho, J. 2004, ApJ, 603, 180CrossRefGoogle Scholar
Lazarian, A., & Opher, M. 2009, ApJ, 703, 8CrossRefGoogle Scholar
Lovelace, R. V. E., 1976, Nature, 262, 649652CrossRefGoogle Scholar
Masuda, S., Kosugi, T., Hara, H., Tsuneta, S., & Ogawara, Y., 1994, Nature, 371, 495497CrossRefGoogle Scholar
Matthaeus, W. H. & Lamkin, S. L. 1986, Physics of Fluids, 29, 2513CrossRefGoogle Scholar
Matthaeus, W. H. & Lamkin, S. L. 1985, Physics of Fluids, 28, 303CrossRefGoogle Scholar
McKee, C. F. & Ostriker, E. C. 2007, ARA&A, 45, 565Google Scholar
Ossendrijver, M., 2003, A&A Rev., 11, 287367Google Scholar
Parker, E., 1957, Journal Geophysical Research, 62, 509520CrossRefGoogle Scholar
Parker, E. N., 1970, ApJ, 162, 665673CrossRefGoogle Scholar
Parker, E. N., Cosmical magnetic fields: Their origin and their activity, Oxford, Clarendon Press (1979)Google Scholar
Parker, E. N., 1993, ApJ, 408, 707719CrossRefGoogle Scholar
Petschek, H. E.Magnetic field annihilation. The Physics of Solar Flares, AAS-NASA Symposium (NASA SP-50), ed. Hess, WH. (Greenbelt, MD: NASA) 425Google Scholar
Priest, E. R. & Forbes, T. G., 2002, A&A Rev., 10, 313377Google Scholar
Shay, M. A. & Drake, J. F., 1998, Geophys. Res. Letters Geophysical Research Letters, 25, 37593762CrossRefGoogle Scholar
Shibata, K. & Tanuma, S. 2001, Earth, Planets, and Space, 53, 473CrossRefGoogle Scholar
Shimizu, T., Kondoh, K., Shibata, K. & Ugai, M. 2009a, Physics of Plasmas, 16, 000CrossRefGoogle Scholar
Shimizu, T., Kondoh, K., Ugai, M., & Shibata, K. 2009b, ApJ, 707, 420427CrossRefGoogle Scholar
Stix, M. 2000, A&A, 42, 8589Google Scholar
Sturrock, P. A., 1966, Nature, 211, 695697CrossRefGoogle Scholar
Sweet, P. A. 1958, in Electromagnetic Phenomena in Cosmical Physics, IAU Symposium no. 6, ed. Bo Lehnert, 123Google Scholar
Yokoyama, T. & Shibata, K., 1995, Nature, 375, 4244CrossRefGoogle Scholar