Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T16:01:33.287Z Has data issue: false hasContentIssue false

Particle acceleration and turbulence transport in heliospheric plasmas

Published online by Cambridge University Press:  01 September 2008

Rami Vainio*
Affiliation:
Department of Physics, P.O.B. 64, FI-00014, University of Helsinki, Finland email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Plasma turbulence at various length scales affects practically all mechanisms proposed to be responsible for particle acceleration in the heliosphere. In this paper, we concentrate on providing a synthesis of some recent efforts to understand particle acceleration in the solar corona and inner heliosphere. Acceleration at coronal and interplanetary shock waves driven by coronal mass ejections (CMEs) is the most viable mechanism for producing large gradual solar energetic particle (SEP) events, whereas particle acceleration in impulsive flares is assumed to be responsible for the generation of smaller impulsive SEP events. Impulsive events show enhanced abundances of 3He and heavy ions over the gradual SEP events. Gradual events often show charge states consistent with acceleration of ions in a dilute plasma at 1–2 MK temperature, while impulsive events have higher charge states. The division of SEP events to gradual and impulsive has been challenged by the discovery of events, which show intensity-vs.-time profiles typical for gradual events but, especially at the highest energies (above 10 MeV/nucl), abundances and charge states more typical of impulsive events. Although a direct flare component cannot be ruled out, we find that particle acceleration at quasi-perpendicular shocks in the low corona also offer a plausible explanation for the hybrid events. By carefully modeling shock acceleration and coronal turbulence and its modification by the accelerated particles, a consistent picture of gradual events thus emerges from the shock acceleration hypothesis.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Bell, A. R. 1978, MNRAS, 182, 147CrossRefGoogle Scholar
Bieber, J. W., Wanner, W., & Matthaeus, W. H. 1996, J. Geophys. Res., 101, 2511CrossRefGoogle Scholar
Bieber, J. W., Matthaeus, W. H., Shalchi, A., & Qin, G. 2004, Geophys. Res. Lett., 31, L10805CrossRefGoogle Scholar
Bruno, R. & Carbone, V. 2005, Living Rev. Solar Phys., 2, 4. URL (cited on 3 Oct 2008): http://www.livingreviews.org/lrsp-2005-4CrossRefGoogle Scholar
Cane, H. V., Mewaldt, R. A., Cohen, C. M. S., & von Rosenvinge, T. T. 2006, J. Geophys. Res., 111, A06S90Google Scholar
Coleman, P. J. 1968, ApJ, 153, 371CrossRefGoogle Scholar
Dröge, W. 2003, ApJ, 589, 1027CrossRefGoogle Scholar
Drury, L. O'C. 1983, Rep. Prog. Phys., 46, 973CrossRefGoogle Scholar
Giacalone, J. 2005, ApJ, 624, 765CrossRefGoogle Scholar
Jokipii, J. R. 1966, ApJ, 146, 480CrossRefGoogle Scholar
Jokipii, J. R. & Coleman, P. J. 1968, J. Geophys. Res., 73, 5495CrossRefGoogle Scholar
Kennel, C. F., Coroniti, F. V., Scarf, F. L., Livesey, W. A., Russell, C. T., & Smith, E. J. 1986, J. Geophys. Res., 91, 11917Google Scholar
Klecker, B., Möbius, E., & Popecki, M. A. 2006, Space Sci. Rev., 124, 289CrossRefGoogle Scholar
Kocharov, L. & Torsti, J. 2002, Sol. Phys., 207, 149CrossRefGoogle Scholar
Kocharov, L., Kovaltsov, G. A., Torsti, J., & Ostryakov, V. M. 2000, A&A, 357, 716Google Scholar
Lee, M. A. 1983, J. Geophys. Res., 88, 6109CrossRefGoogle Scholar
Lee, M. A. 2005, ApJS, 158, 38CrossRefGoogle Scholar
Li, G., Zank, G. P., & Rice, W. K. M. 2003, J. Geophys. Res., 108, 1082Google Scholar
Matthaeus, W. H., Goldstein, M. L., & Roberts, D. A. 1990, J. Geophys. res., 95, 20673Google Scholar
Marsch, E. & Tu, C.-Y. 1990, J. Geophys. Res., 95, 8211CrossRefGoogle Scholar
Ng, C. K. & Reames, D. V. 2008, ApJL, 686, L123CrossRefGoogle Scholar
Reames, D. V. 1999, Space Sci. Rev., 90, 413CrossRefGoogle Scholar
Rice, W. K. M., Zank, G. P., & Li, G. 2003, J. Geophys. Res., 108, 1369Google Scholar
Sandroos, A. & Vainio, R. 2007, ApJL, 662, 127CrossRefGoogle Scholar
Shalchi, A., Bieber, J. W., Matthaeus, W. H., & Qin, G. 2004, ApJ, 616, 617CrossRefGoogle Scholar
Tylka, A. J. & Lee, M. A. 2006, ApJ, 646, 1319CrossRefGoogle Scholar
Tylka, A. J., Cohen, C. M. S., Dietrich, W. F., Lee, M. A., Maclennan, C. G., Mewaldt, R. A., Ng, C. K., & Reames, D. V. 2005, ApJ, 625, 474CrossRefGoogle Scholar
Vainio, R. 2003, A&A, 406, 735Google Scholar
Vainio, R. 2006, in: Gopalswamy, N., Mewaldt, R. & Torsti, J. (eds.), Solar Eruptions and Energetic Particles, Geophys. Monograph Series 165 (Washington, DC: AGU), p. 253CrossRefGoogle Scholar
Vainio, R. & Laitinen, T. 2001, A&A, 371, 738Google Scholar
Vainio, R. & Laitinen, T. 2007, ApJ, 658, 622CrossRefGoogle Scholar
Vainio, R. & Laitinen, T. 2008, J. Atm. Solar-Terr. Phys., 70, 467CrossRefGoogle Scholar
Vainio, R. & Schlickeiser, R. 1998, A&A, 331, 793Google Scholar
Vainio, R. & Schlickeiser, R. 1999, A&A, 343, 303Google Scholar
Vainio, R., Laitinen, T., & Fichtner, H. 2003, A&A, 407, 713Google Scholar
Zank, G. P., Rice, W. K. M., & Wu, C. C. 2000, J. Geophys. Res., 105, 25079Google Scholar