Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-14T12:54:45.910Z Has data issue: false hasContentIssue false

Particle acceleration and the origin of the very high energy emission around black holes and relativistic jets

Published online by Cambridge University Press:  07 April 2020

Elisabete M. de Gouveia Dal Pino
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG-USP), Universidade de São Paulo, R. do Matão, 1226 05508-090 São Paulo, SP Brasil email: [email protected]
Grzegorz Kowal
Affiliation:
EACH, Universidade de São Paulo
Luis Kadowaki
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG-USP), Universidade de São Paulo, R. do Matão, 1226 05508-090 São Paulo, SP Brasil email: [email protected]
Tania E. Medina-Torrejón
Affiliation:
Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG-USP), Universidade de São Paulo, R. do Matão, 1226 05508-090 São Paulo, SP Brasil email: [email protected]
Yosuke Mizuno
Affiliation:
Physics Institute, University of Tel Aviv
Chandra Singh
Affiliation:
Physics Institute, University of Frankfurt
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Particle acceleration induced by fast magnetic reconnection may help to solve current puzzles related to the interpretation of the very high energy (VHE) and neutrino emissions from AGNs and compact sources in general. Our general relativistic-MHD simulations of accretion disk-corona systems reveal the growth of turbulence driven by MHD instabilities that lead to the development of fast magnetic reconnection in the corona. In addition, our simulations of relativistic MHD jets reveal the formation of several sites of fast reconnection induced by current-driven kink turbulence. The injection of thousands of test particles in these regions causes acceleration up to energies of several PeVs, thus demonstrating the ability of this process to accelerate particles and produce VHE and neutrino emission, specially in blazars. Finally, we discuss how reconnection can also explain the observed VHE luminosity-black hole mass correlation, involving hundreds of non-blazar sources like Perseus A, and black hole binaries.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Aharonian, F., Akhperjanian, A. G., Bazer-Bachi, A. R., et al. 2007, ApJ Letts., 664, L71CrossRefGoogle Scholar
Clausen-Brown, E. & Lyutikov, M. 2012, MNRAS, 426, 1374CrossRefGoogle Scholar
Cerutti, B., Uzdensky, D. A. & Begelman, M. C. 2014, ApJ, 746, 148CrossRefGoogle Scholar
de Gouveia Dal Pino, E. M., & Lazarian, A. 2005, A&A, 441, 845Google Scholar
de Gouveia Dal Pino, E. M., Piovezan, P. P., & Kadowaki, L. H. S. 2010, A&A, 518, A5Google Scholar
de Gouveia Dal Pino, E. M., & Kowal, G. 2015, in Magnetic Fields in Diffuse Media, Astrophysics and Space Science Library, Eds. Lazarian, A.. de Gouveia Dal Pino, E., Melioli, C., 407, 373CrossRefGoogle Scholar
de Gouveia Dal Pino, E., del Valle, M. V., Kadowaki, L., et al. 2016, Frontier Research in Astrophysics II, id. 56, 56Google Scholar
del Valle, M. V., de Gouveia Dal Pino, E.M., & Kowal, G. 2016, MNRASGoogle Scholar
Drake, J. F., Swisdak, M., Che, H., & Shay, M. A. 2006, Nature, 443, 553CrossRefGoogle Scholar
Giannios, D., Uzdensky, D. A., & Begelman, M. C., 2009, MNRAS, 228, 395 L29-L33Google Scholar
Guo, F., Li, H., Daughton, W. & Liu, Y. H. 2016, ApJ, Physics of Plasmas, 23, 055708CrossRefGoogle Scholar
IceCube, T., Fermi-LAT, MAGIC, et al. 2018, Science, arXiv:1807.08816Google Scholar
Kadowaki, L. H. S., de Gouveia Dal Pino, E. M., & Singh, C. B. 2015, ApJ, 802, 113CrossRefGoogle Scholar
Kadowaki, L. H. S., de Gouveia Dal Pino, E. M., & Stone, J. 2018, ApJ (in press), 2018, arXiv:180308557KGoogle Scholar
Khiali, B., de Gouveia Dal Pino, E. M., & del Valle, M. V. 2015, MNRAS, 449, 3410.1093/mnras/stv248CrossRefGoogle Scholar
Khiali, B. & de Gouveia Dal Pino, E. M. 2016, MNRAS, 455, 83810.1093/mnras/stv2337CrossRefGoogle Scholar
Kowal, G., Lazarian, A., Vishniac, E. T., & Otmianowska-Mazur, K., 2009, ApJ, 700, 63CrossRefGoogle Scholar
Kowal, G., de Gouveia Dal Pino, E. M., & Lazarian, A. 2011, ApJ, 735, 102CrossRefGoogle Scholar
Kowal, G., de Gouveia Dal Pino, E. M., & Lazarian, A. 2012, PRL, 108, 24110210.1103/PhysRevLett.108.241102CrossRefGoogle Scholar
Kushwaha, P., Sinha, A., Misra, R., Singh, K. P., & de Gouveia Dal Pino, E. M. 2017, ApJ, 849, 138CrossRefGoogle Scholar
Lazarian, A. & Vishniac, E. T. 1999, ApJ, 517, 700CrossRefGoogle Scholar
Lyubarsky, Y. & Liverts, M. 2008, ApJ, 682, 1436CrossRefGoogle Scholar
Singh, C. B., de Gouveia Dal Pino, E. M., & Kadowaki, L. H. S. 2015, ApJ Letts., 799, L2010.1088/2041-8205/799/2/L20CrossRefGoogle Scholar
Singh, C. B., Mizuno, Y., & de Gouveia Dal Pino, E. M. 2016, ApJ, 824, 48CrossRefGoogle Scholar
Sironi, L., & Spitkovsky, A. 2014, ApJ Letts., 783, L21CrossRefGoogle Scholar
Sol, H., Zech, A., Boisson, C.et al. 2013, Astroparticle Physics, 43, 215CrossRefGoogle Scholar
Zhang, B., & Yan, H. 2011, ApJ, 726, 90CrossRefGoogle Scholar
Zenitani, S. & Hoshino, M. 2008, AJ, 677, 530CrossRefGoogle Scholar