Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T17:23:27.608Z Has data issue: false hasContentIssue false

The parsec-scale structure of jet-driven H I out ows in radio galaxies

Published online by Cambridge University Press:  03 March 2020

Raffaella Morganti
Affiliation:
ASTRON, the Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD wingeloo, The Netherlands. email: [email protected] Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands;
Robert Schulz
Affiliation:
ASTRON, the Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD wingeloo, The Netherlands. email: [email protected]
Kristina Nyland
Affiliation:
National Radio Astronomy Observatory, Charlottesville, VA22903, USA;
Zsolt Paragi
Affiliation:
Joint Institute for VLBI ERIC, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, Netherlands;
Tom Oosterloo
Affiliation:
ASTRON, the Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD wingeloo, The Netherlands. email: [email protected] Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands;
Elizabeth Mahony
Affiliation:
CSIRO Astronomy and Space Science, PO Box 76, Epping NSW 1710, Australia
Suma Murthy
Affiliation:
ASTRON, the Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD wingeloo, The Netherlands. email: [email protected] Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands;
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Radio jets can play multiple roles in the feedback loop by regulating the accretion of the gas, by enhancing gas turbulence, and by driving gas outflows. Numerical simulations are beginning to make detailed predictions about these processes. Using high resolution VLBI observations we test these predictions by studying how radio jets of different power and in different phases of evolution affect the properties and kinematics of the surrounding H I gas. Consistent with predictions, we find that young (or recently restarted) radio jets have stronger impact as shown by the presence of H I outflows. The outflowing medium is clumpy with clouds of with sizes up to a few tens of pc and mass ∼ 104Mȯ) already in the region close to the nucleus (< 100 pc), making the jet interact strongly and shock the surrounding gas. We present a case of a low-power jet where, as suggested by the simulations, the injection of energy may produce an increase in the turbulence of the medium instead of an outflow.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Alatalo, K., Blitz, L., Young, L. M., et al. 2011, ApJ, 735, 88 Google Scholar
Alatalo, K., Lacy, M., Lanz, L., et al. 2015, ApJ, 798, 31 CrossRefGoogle Scholar
Cielo, S., Bieri, R., Volonteri, M., Wagner, A. Y., & Dubois, Y. 2018, MNRAS, 477, 1336 CrossRefGoogle Scholar
Combes, F., Garca-Burillo, S., Casasola, V., et al. 2013, A&A, 558, A124 Google Scholar
Croston, J. H., Hardcastle, M. J., Kharb, P., Kraft, R. P., & Hota, A. 2008, ApJ, 688, 190 CrossRefGoogle Scholar
Dasyra, K. M., & Combes, F. 2012, A&A, 541, L7 Google Scholar
Garca-Burillo, S., Combes, F., Usero, A., et al. 2014, A&A, 567, A125 Google Scholar
Geréb, K., Maccagni, F. M., Morganti, R., & Oosterloo, T. A. 2015, A&A, 575, A44 Google Scholar
Giroletti, M., Giovannini, G., & Taylor, G. B. 2005, A&A, 441, 89 Google Scholar
Guillard, P., Boulanger, F., Lehnert, M. D., et al. 2015, A&A, 574, A32 Google Scholar
Holt, J., Tadhunter, C. N., & Morganti, R. 2008, MNRAS, 387, 639 CrossRefGoogle Scholar
Morganti, R., Fogasy, J., Paragi, Z., Oosterloo, T., & Orienti, M. 2013, Science, 341, 1082 CrossRefGoogle Scholar
Morganti, R., Oosterloo, T., Oonk et al. 2015, A&A, 580, A1 Google Scholar
Morganti, R. 2017, Nature Astronomy, 1, 596 Google Scholar
Morganti, R. & Oosterloo, T. 2018, A&ARev. in press, arXiv:1807.01475Google Scholar
Mukherjee, D., Wagner, A. Y., Bicknell, G. V., et al. 2018a, MNRAS, 476, 80 Google Scholar
Mukherjee, D., Bicknell, G. V., Wagner, A. Y. et al. 2018b, MNRAS, 479, 5544 CrossRefGoogle Scholar
Murthy, S., Morganti, R., Oosterloo, T., et al. 2019, A&A, 629, A58 Google Scholar
Ogorzalek, A., Zhuravleva, I., Allen, S. W., et al. 2017, MNRAS, 472, 1659 CrossRefGoogle Scholar
Oosterloo, T., Raymond Oonk, J. B., Morganti, R., et al. 2017, A&A, 608, A38 Google Scholar
Runnoe, J. C., Gültekin, K., & Rupke, D. S. N. 2018, ApJ, 852, 8 CrossRefGoogle Scholar
Schulz, R., Morganti, R., Nyland, K., et al. 2018, A&A in press, arXiv:1806.06653Google Scholar
Struve, C., Oosterloo, T., Sancisi, R., Morganti, R., & Emonts, B. H. C. 2010, A&A, 523, A75 Google Scholar
Wagner, A. Y., Bicknell, G. V., & Umemura, M. 2012, ApJ, 757, 136 CrossRefGoogle Scholar