Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T00:52:41.598Z Has data issue: false hasContentIssue false

PARSEC evolutionary tracks and isochrones including seismic properties

Published online by Cambridge University Press:  02 August 2018

J. Montalbán
Affiliation:
Dipartimento Fisica e Astronomia, University of Padova, Italy email: [email protected]
A. Bressan
Affiliation:
SISSA-Trieste, Italy INAF-Padova, Italy
L. Girardi
Affiliation:
INAF-Padova, Italy
T. Rodrigues
Affiliation:
INAF-Padova, Italy
D. Bossini
Affiliation:
University of Birmingham, United Kingdom
A. Miglio
Affiliation:
University of Birmingham, United Kingdom
R. Scuflaire
Affiliation:
University of Liège, Belgium
M. Trabucchi
Affiliation:
Dipartimento Fisica e Astronomia, University of Padova, Italy email: [email protected]
P. Marigo
Affiliation:
Dipartimento Fisica e Astronomia, University of Padova, Italy email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the recent years it has been generally accepted that seismic parameters add an important observational constraint for the study of stellar populations and galaxy evolution. Padova-Trieste (PARSEC) evolutionary tracks are widely used to characterise stellar objects and stellar populations. Stellar models at the base of these studies suffer from uncertainties and, more important, degeneracy among different input parameters: stellar mass, chemical composition, central chemical mixing, age, etc. Adding seismic properties to the classic parameters for stars at different evolutionary states, from the H main-sequence to the asymptotic giant branch, is a powerful tool to calibrate physical processes in stellar models, and hence to improve our interpretation of Galactic and extra-Galactic observations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Bedding, T. R., Mosser, B., Huber, D., et al., 2011, Nature, 471, 608Google Scholar
Bossini, D., Miglio, A., Salaris, M., et al., 2017, MNRAS, 469, 4718Google Scholar
Bressan, A., Marigo, P., Girardi, L., et al., 2012, MNRAS, 427, 127Google Scholar
da Silva, L., Girardi, L., Pasquini, L., et al., 2006, A&A, 458, 609Google Scholar
Girardi, L., Groenewegen, M. A. T., Hatziminaoglou, E., & da Costa, L., 2005, A&A, 436, 895Google Scholar
Miglio, A., Chiappini, C., Morel, T., et al., 2013, MNRAS, 429, 423Google Scholar
Mosser, B., Benomar, O., Belkacem, K., et al., 2014, A&A, 572, L5Google Scholar
Paxton, B., Cantiello, M., Arras, P., et al., 2013, ApJS, 208, 4Google Scholar
Rodrigues, T. S., Girardi, L., Miglio, A., et al., 2014, MNRAS, 445, 2758Google Scholar
Rodrigues, T. S., Bossini, D., Miglio, A., et al., 2017, MNRAS, 467, 1433Google Scholar
Scuflaire, R., Montalbán, J., & Théado, S., et al., 2008, Ap&SS, 316, 149Google Scholar