Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T21:15:17.303Z Has data issue: false hasContentIssue false

Paradigm shifts in solar dynamo modeling

Published online by Cambridge University Press:  01 November 2008

Axel Brandenburg*
Affiliation:
Nordita, Roslagstullsbacken 23, 10691 Stockholm, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Selected topics in solar dynamo theory are being highlighted. The possible relevance of the near-surface shear layer is discussed. The role of turbulent downward pumping is mentioned in connection with earlier concerns that a dynamo-generated magnetic field would be rapidly lost from the convection zone by magnetic buoyancy. It is argued that shear-mediated small-scale magnetic helicity fluxes are responsible for the success of some of the recent large-scale dynamo simulations. These fluxes help in disposing of excess small-scale magnetic helicity. This small-scale magnetic helicity, in turn, is generated in response to the production of an overall tilt in each Parker loop. Some preliminary calculations of this helicity flux are presented for a system with uniform shear. In the Sun the effects of magnetic helicity fluxes may be seen in coronal mass ejections shedding large amounts of magnetic helicity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Benevolenskaya, E. E., Hoeksema, J. T., Kosovichev, A. G., & Scherrer, P. H. 1999, ApJ 517, L163CrossRefGoogle Scholar
Blackman, E. G. & Brandenburg, A. 2003, ApJ 584, L99CrossRefGoogle Scholar
Brandenburg, A. 2001, ApJ 550, 824CrossRefGoogle Scholar
Brandenburg, A. 2005, ApJ 625, 539CrossRefGoogle Scholar
Brandenburg, A. & Subramanian, K. 2005a, AN 326, 400Google Scholar
Brandenburg, A. & Subramanian, K. 2005b, Phys. Rep., 417, 1Google Scholar
Brown, B. P., Browning, M. K., Brun, A. S., et al. 2007, AIPC, 948, 271Google Scholar
Browning, M. K., Miesch, M. S., Brun, A. S., & Toomre, J. 2006, ApJ 648, L157CrossRefGoogle Scholar
Brun, A. S. & Toomre, J. 2002, ApJ 570, 865Google Scholar
Brun, A. S., Miesch, M. S. & Toomre, J. 2004, ApJ 614, 1073Google Scholar
Brun, A., Miesch, M., & Toomre, J. 2006, ApJ, 614, 1073CrossRefGoogle Scholar
Chatterjee, P., Nandy, D., & Choudhuri, A. R. 2004, A&A 427, 1019Google Scholar
DeLuca, E. E., Gilman, P. A. 1986, Geophys. Astrophys. Fluid Dyn. 37, 85CrossRefGoogle Scholar
DeLuca, E. E., Gilman, P. A. 1988, Geophys. Astrophys. Fluid Dyn. 43, 119CrossRefGoogle Scholar
Démoulin, P., Mandrini, C. H., van Driel-Gesztelyi, L., et al. 2002, ApJ 382, 650Google Scholar
Dikpati, M. & Charbonneau, P. 1999, ApJ 518, 508CrossRefGoogle Scholar
Glatzmaier, G. A. & Roberts, P. H. 1995, Nature 377, 203CrossRefGoogle Scholar
Käpylä, P. J., Korpi, M. J., & Brandenburg, A. 2008, A&A 491, 353Google Scholar
Kitchatinov, L. L. & Mazur, M. V. 2000, Solar Phys. 191, 325Google Scholar
Kleeorin, N. & Rogachevskii, I. 1994, Phys. Rev. E 50, 2716CrossRefGoogle Scholar
Kleeorin, N., Moss, D., Rogachevskii, I., Sokoloff, D. 2000, A&A 361, L5Google Scholar
Kleeorin, N., Moss, D., Rogachevskii, I., Sokoloff, D. 2002, A&A 387, 453Google Scholar
Kleeorin, N., Moss, D., Rogachevskii, I., Sokoloff, D. 2003a, A&A 400, 9Google Scholar
Kleeorin, N., Kuzanyan, K., Moss, D., et al. 2003b, A&A 409, 1097Google Scholar
Köhler, H. 1973, A&A 25, 467Google Scholar
Küker, M., Rüdiger, G., & Schultz, M. 2001, A&A 374, 301Google Scholar
Parker, E. N. 1957, Proc. Nat. Acad. Sci. 43, 8Google Scholar
Parker, E. N. 1975, ApJ 198, 205Google Scholar
Parker, E. N. 1984, ApJ 283, 343CrossRefGoogle Scholar
Parker, E. N. 1993, ApJ 408, 707Google Scholar
Seehafer, N. 1996, Phys. Rev. E 53, 1283Google Scholar
Steenbeck, M. & Krause, F. 1969, AN 291, 49Google Scholar
Roberts, P. H. & Stix, M. 1972, A&A 18, 453Google Scholar
Spiegel, E. A. & Weiss, N. O. 1980, Nature 287, 616CrossRefGoogle Scholar
Subramanian, K. & Brandenburg, A. 2004, Phys. Rev. Lett. 93, 205001CrossRefGoogle Scholar
Subramanian, K. & Brandenburg, A. 2006, ApJ 648, L71CrossRefGoogle Scholar
Thompson, M. J., Christensen-Dalsgaard, J., Miesch, M. S., & Toomre, J. 2003, ARA&A 41, 599Google Scholar
Vainshtein, S. I. & Cattaneo, F. 1992, ApJ 393, 165Google Scholar
Vishniac, E. T. & Cho, J. 2001, ApJ 550, 752Google Scholar
Yoshimura, H. 1975, ApJS 29, 467CrossRefGoogle Scholar
Yousef, T. A. & Brandenburg, A. 2003, A&A 407, 7Google Scholar
Yousef, T. A., Brandenburg, A., & Rüdiger, G. 2003, A&A 411, 321Google Scholar