Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T20:13:02.907Z Has data issue: false hasContentIssue false

Panchromatic modeling of the extremely luminous dust-obscured quasars at the cosmic noon

Published online by Cambridge University Press:  10 June 2020

Lulu Fan
Affiliation:
Shandong Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, Shandong264209, China email: [email protected]
Yunkun Han
Affiliation:
Yunnan Observatories, Chinese Academy of Sciences, Kunming, 650011, China
Kirsten K. Knudsen
Affiliation:
Department of Earth and Space Sciences, Chalmers University of Technology, SE-439 92, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The massive galaxies and their central supermassive black holes (SMBHs) co-evolution scenario proposes that a gas-rich major merger can trigger the central starburst and feeding the SMBH accretion, and then star formation is eventually quenched by quasar feedback. In this evolutionary sequence, dust-obscured quasars may represent the critical transition phase between starburst and unobscured quasars. Modeling the panchromatic emission of these hidden monsters provides a unique way to explore their physical properties and therefore the co-evolution between SMBHs and their hosts. However, most of modelling methods are not suitable for the extremely luminous systems with obscured Active Galactic Nucleus (AGN) emission. Here we present two case studies of panchromatic modeling of the extremely luminous dust-obscured quasars at the cosmic noon.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Berta, S., Lutz, D., Santini, P., Wuyts, S., Rosario, D., Brisbin, D., Cooray, A., Franceschini, A., et al. 2013, A&A, 551, 100Google Scholar
Daz-Santos, T., Assef, R. J., Blain, A. W., Tsai, C.-W., Aravena, M., Eisenhardt, P., Wu, J., Stern, D., & Bridge, C. 2016, ApJ (Letters), 816, L610.3847/2041-8205/816/1/L6CrossRefGoogle Scholar
Eisenhardt, P. R. M., Wu, J., Tsai, C.-W., Assef, R., Benford, D., Blain, A., Bridge, C., & Condon, J. J. 2012, ApJ, 755, 17310.1088/0004-637X/755/2/173CrossRefGoogle Scholar
Fan, L., Han, Y., Fang, G., Gao, Y., Zhang, D., Jiang, X., Wu, Q., Yang, J., et al. 2016, ApJ (Letters), 822, L3210.3847/2041-8205/822/2/L32CrossRefGoogle Scholar
Fan, L., Han, Y., Nikutta, R., Drouart, G., & Knudsen, K. K. 2016, ApJ, 823, 10710.3847/0004-637X/823/2/107CrossRefGoogle Scholar
Fan, L., Jones, S. F., Han, Y., & Knudsen, K. K. 2017, PASP, 129, 12410110.1088/1538-3873/aa8e91CrossRefGoogle Scholar
Fan, L., Gao, Y., Knudsen, K. K., & Shu, X. 2018, ApJ, 854, 15710.3847/1538-4357/aaaaaeCrossRefGoogle Scholar
Fan, L., Knudsen, K. K., Fogasy, J., & Drouart, G. 2018, ApJ (Letters), 856, L510.3847/2041-8213/aab496CrossRefGoogle Scholar
Han, Y., & Han, Z. 2012, ApJ, 749, 12310.1088/0004-637X/749/2/123CrossRefGoogle Scholar
Han, Y., & Han, Z. 2014, ApJS, 215, 210.1088/0067-0049/215/1/2CrossRefGoogle Scholar
Wu, J., Tsai, C.-W., Sayers, J., Benford, D., Bridge, C., Blain, A., Eisenhardt, P., Stern, D.et al. 2012, ApJ, 756, 9610.1088/0004-637X/756/1/96CrossRefGoogle Scholar