Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-02T20:15:42.739Z Has data issue: false hasContentIssue false

The PALFA Survey: Going to great depths to find radio pulsars

Published online by Cambridge University Press:  20 March 2013

P. Lazarus*
Affiliation:
Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, Bonn, Germany, 53121 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The on-going PALFA survey is searching the Galactic plane (|b| < 5°, 32° < l < 77° and 168° < l < 214°) for radio pulsars at 1.4 GHz using ALFA, the 7-beam receiver installed at the Arecibo Observatory. By the end of August 2012, the PALFA survey has discovered 100 pulsars, including 17 millisecond pulsars (P < 30 ms). Many of these discoveries are among the pulsars with the largest DM/P ratios, proving that the PALFA survey is capable of probing the Galactic plane for millisecond pulsars to a much greater depth than any previous survey. This is due to the survey's high sensitivity, relatively high observing frequency, and its high time and frequency resolution. Recently the rate of discoveries has increased, due to a new more sensitive spectrometer, two updated complementary search pipelines, the development of online collaborative tools, and access to new computing resources. Looking forward, focus has shifted to the application of artificial intelligence systems to identify pulsar-like candidates, and the development of an improved full-resolution pipeline incorporating more sophisticated radio interference rejection. The new pipeline will be used in a complete second analysis of data already taken, and will be applied to future survey observations. An overview of recent developments, and highlights of exciting discoveries will be presented.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Champion, D. J., Ransom, S. M., Lazarus, P., et al. 2008, Science, 320, 1309CrossRefGoogle Scholar
Cordes, J. M., Freire, P. C. C., Lorimer, D. R., et al. 2006, ApJ, 637, 446Google Scholar
Cordes, J. M. & Lazio, T. J. W. 2002, ArXiv Astrophysics e-printsGoogle Scholar
Demorest, P. B., Pennucci, T., Ransom, S. M., et al. 2010, Nature, 467, 1081Google Scholar
Deneva, J. S., Freire, P. C. C., Cordes, J. M., et al. 2012, ApJ, 757, 89CrossRefGoogle Scholar
Freire, P. C. C., Bassa, C. G., Wex, N., et al. 2011, MNRAS, 412, 2763Google Scholar
Hessels, J. W. T., Nice, D. J., Gaensler, B. M., et al. 2008, ApJL, 682, L41Google Scholar
Kasian, L. E. 2012, Radio observations of two binary pulsars. Ph.D. thesis, The University of British ColumbiaGoogle Scholar
Knispel, B., Allen, B., Cordes, J. M., et al. 2010, Science, 329, 1305Google Scholar
Kramer, M., Stairs, I. H., Manchester, R. N., et al. 2006, Science, 314, 97Google Scholar
Lorimer, D. R., Stairs, I. H., Freire, P. C., et al. 2006, ApJ, 640, 428CrossRefGoogle Scholar
Portegies Zwart, S., van den Heuvel, E. P. J., van Leeuwen, J., et al. 2011, ApJ, 734, 55Google Scholar
Ransom, S. M., Eikenberry, S. S., & Middleditch, J. 2002 AJ, 124, 1788Google Scholar
Rousseau, R., Grondin, M.-H., Van Etten, A., et al. 2012, A&A, 544, A3Google Scholar
Spitler, L. G., Cordes, J. M., Chatterjee, S., et al. 2012, ApJ, 748, 73Google Scholar
van Haasteren, R., Levin, Y., Janssen, G. H., et al. 2011, MNRAS, 414, 3117CrossRefGoogle Scholar
Wex, N. & Kopeikin, S. M. 1999, ApJ, 514, 388Google Scholar