Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T03:26:34.272Z Has data issue: false hasContentIssue false

Overview of Multiple–Aperture Interferometry Binary Star Results from the Southern Hemisphere

Published online by Cambridge University Press:  12 July 2007

John Davis*
Affiliation:
School of Physics, University of Sydney, NSW 2006, Australia email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The first multiple-aperture interferometric study of a binary system, in which the power of combining interferometric and spectroscopic data was demonstrated, was made from the Southern Hemisphere. The observations of α Vir with the Narrabri Stellar Intensity Interferometer (NSII) were combined with spectroscopic and photometric data to yield the mass, radius and luminosity of the primary as well as an accurate distance to the system. The NSII also revealed a number of stars, previously thought to be single, to be binary systems. Several of these systems have subsequently been shown to be spectroscopic binaries.

The Sydney University Stellar Interferometer (SUSI) and the European Southern Observatory's Very Large Telescope Interferometer (VLTI) are the two current Southern Hemisphere multiple aperture interferometers. SUSI is being used to determine interferometric orbits for some of the binary systems discovered with the NSII including β Cen and λ Sco and, in combination with spectroscopy, to determine accurate masses for early-type stars and accurate dynamical parallaxes for the systems.

The VLTI has operated with three beam-combining instruments, namely VINCI, MIDI and AMBER. The few observations of binary systems that have been made so far are summarised and, while in general they are of a preliminary nature, they demonstrate the potential of the VLTI for binary star studies.

One double-lined spectroscopic binary that has been observed with all three Southern Hemisphere instruments is γ2 Vel, which has the brightest Wolf-Rayet star in the sky as its secondary. The observations and preliminary results for the masses of the O-type primary and WC8 secondary and for the distance to the system are summarised.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Ausseloos, M., Aerts, C., Uytterhoeven, K., Schrijvers, C., Waelkens, C., & Cuypers, J. 2002, A&A 384, 209 Google Scholar
Ausseloos, M., Aerts, C., Lefever, K., Davis, J., & Harmanec, P. 2006, A&A 455, 259 Google Scholar
Ausseloos, M., Scuflaire, R., Thoul, A., & Aerts, C. 2004, MNRAS 355, 352 CrossRefGoogle Scholar
Chesneau, O. et al. 2005, A&A 435, 275 Google Scholar
Chesneau, O. et al. 2006, A&A 455, 1009 Google Scholar
Davis, J., Tango, W.J., Booth, A.J., ten Brummelaar, T.A., Minard, R.A., & Owens, S.M. 1999, MNRAS 303, 773 CrossRefGoogle Scholar
Davis, J., Mendez, A., Seneta, E.B., Tango, W.J., Booth, A.J., O'Byrne, J.W., Thorvaldson, E.D., Ausseloos, M., Aerts, C., & Uytterhoeven, K. 2005, MNRAS 356, 1362 CrossRefGoogle Scholar
Glindemann, A. et al. 2003, in: Traub, W.A. (ed.) Interferometry for Optical Astronomy II, Proceedings of SPIE Vol. 4838, p. 89Google Scholar
Hanbury, B rown, R., Davis, J., & Allen, L.R. MNRAS 1967, 137, 375 Google Scholar
Hanbury, B rown, R., Davis, J., & Allen, L.R. MNRAS 1974, 167, 121 CrossRefGoogle Scholar
Hanbury, B rown, R., Davis, J., Herbison-Evans, D., & Allen, L.R. MNRAS 1970, 148, 103 CrossRefGoogle Scholar
Herbison-Evans, D., Hanbury, Brown R., Davis, J., & Allen, L.R. MNRAS 1971, 151, 161 CrossRefGoogle Scholar
Kervella, P. et al. 2003, in: Traub, W.A. (ed.) Interferometry for Optical Astronomy II, Proceedings of SPIE Vol. 4838, p. 858Google Scholar
Leinert, C. et al. 2003, in: Traub, W.A. (ed.) Interferometry for Optical Astronomy II, Proceedings of SPIE Vol. 4838, p. 893Google Scholar
Malbet, F., Petrov, R.G., Weigelt, G., Stee, P., Tatulli, E., Domiciano de Souza, A., & Millour, F. and the AMBER consortium 2006, in Monnier, J.D., Schöller, M., Danchi, W.C. (eds.) Advances in Stellar Interferomety, Proceedings of SPIE Vol. 6268, CID 626802Google Scholar
Matsuura, M. et al. 2006, ApJ 646, 123 CrossRefGoogle Scholar
Otero, S.A., Fieseler, P.D., & Lloyd, C. 2000, IAU Information Bulletin on Variable Stars, No. 4999 (Konkoly Observatory, Budapest)Google Scholar
Petrov, R.G. et al. 2003, in: Traub, W.A. (ed.) Interferometry for Optical Astronomy II, Proceedings of SPIE Vol. 4838, p. 924Google Scholar
Petrov, R. et al. 2007, in: Paresce, F. & Richichi, A. (eds.), The Power of Optical/IR Interferometry, Proc. ESO Workshop (Berlin: Springer-Verlag), in pressGoogle Scholar
Quanz, S.P., Henning, Th., Bouwman, J., Ratzka, Th., & Leinert, Ch. 2006, ApJ 648, 472 CrossRefGoogle Scholar
Ratzka, Th., Leinert, Ch. 2007, in: Paresce, F. & Richichi, A. (eds.), The Power of Optical/IR Interferometry, Proc. ESO Workshop (Berlin: Springer-Verlag), in pressGoogle Scholar
Ratzka, Th., Leinert, Ch., Przygodda, F., & Wolf, S. 2007, in: Paresce, F. & Richichi, A. (eds.), The Power of Optical/IR Interferometry, Proc. ESO Workshop (Berlin: Springer-Verlag), in pressGoogle Scholar
Robertson, J.G., Bedding, T.R., Aerts, C., Waelkens, C., Marson, R.G., & Barton, J.R. MNRAS 1999, 302, 245 CrossRefGoogle Scholar
Schaerer, D., Schmutz, W., & Grenon, M. 1997, ApJ 484, L153 CrossRefGoogle Scholar
Schmutz, W., Schweickhardt, J., Stahl, O., Wolf, B., Dumm, T., Gäng, Th., Jankovics, I., Kaufer, A., Lehmann, H., Mandel, H., Peitz, J., & Rivinius, Th. 1997, A&A 328, 219 Google Scholar
Struve, O., Ebbighausen, E. 1934, ApJ 80, 365 CrossRefGoogle Scholar
Struve, O., Sahade, J., Huang, S-S., Zebergs, V. 1958, ApJ 128, 310 CrossRefGoogle Scholar
Tango, W.J., Davis, J., Ireland, M.J., Aerts, C., Uytterhoeven, K., Jacob, A.P., Mendez, A., North, J.R., Seneta, E.B., & Tuthill, P.G. 2006, MNRAS 370, 884 CrossRefGoogle Scholar
Uytterhoeven, K., Willems, B., Lefever, K., Aerts, C., Telting, J.H., & Kolb, U. 2004, A&A 427, 581 Google Scholar