Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-25T05:29:51.429Z Has data issue: false hasContentIssue false

Outflows from black hole accretion flows with various accretion rates

Published online by Cambridge University Press:  28 October 2024

De-Fu Bu*
Affiliation:
Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China
Feng Yuan*
Affiliation:
Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Both observations and theoretical studies have convincingly shown that outflows (i.e., wind and jet) are common phenomena from black hole accretion systems with various accretion rates, although the physical driving mechanisms are not exactly same for different accretion modes. Outflows are not only important in the dynamics of black hole accretion, but also play an important role in AGN feedback; therefore it is crucial to investigate their main physical properties including mass flux and velocity. In this paper we summarize recent studies in investigating the properties and driving mechanisms from black hole accretion flows with various accretion rates.

Type
Contributed Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Astronomical Union

References

Blandford, R., & Begelman, M. 1999, MNRAS, 303, L1 CrossRefGoogle Scholar
Bu, D., Yuan, F., Gan, Z., & Yang, X. 2016, ApJ, 823, 90 CrossRefGoogle Scholar
Cui, C., & Yuan, F. 2020, ApJ, 890, 81 CrossRefGoogle Scholar
Gofford, J. et al. 2015, MNRAS, 451, 4169 CrossRefGoogle Scholar
Mou, G., Yuan, F., Bu, D., Sun, M., & Su, M. 2014, ApJ, 790, 109 CrossRefGoogle Scholar
Narayan, R., & Yi, I. 1994, ApJ, 428, L13 CrossRefGoogle Scholar
Narayan, R., Igumenshchev, I. V., & Abramowicz, M. A. 2000, ApJ, 539, 798 CrossRefGoogle Scholar
Narayan, R., Sadowski, A., Penna, R. F., & Kulkarni, A. K. 2012, MNRAS, 426, 3241 CrossRefGoogle Scholar
Proga, D., Stone, J. M., & Kallman, T. R. 2000, ApJ, 543, 686 CrossRefGoogle Scholar
Sadowski, A., Lasota, J., Abramowicz, M. A. & Narayan, R. 2016, MNRAS, 456, 3915 CrossRefGoogle Scholar
Shi, F., Li, Z., Yuan, F., & Zhu, B. 2021, NatAs, 5, 928S Google Scholar
Stone, J. M., Pringle, J. E., & Begelman, M. 1999, MNRAS, 310, 1002 CrossRefGoogle Scholar
Wang, W., Bu, D., & Yuan, F. 2022, MNRAS, 513, 5818 CrossRefGoogle Scholar
Yang, H., Yuan, F., Yuan, Y., & White, C. J. 2021, ApJ, 914, 131 CrossRefGoogle Scholar
Yang, H., Yuan, F., Kwan, T., & Dai, L. 2023, MNRAS, arXiv:2211.10710Google Scholar
Yuan, F., Bu, D., & Wu, M. 2012, ApJ, 761, 130 CrossRefGoogle Scholar
Yuan, F., & Narayan, R. 2014, ARA&A, 52, 529 Google Scholar
Yuan, F., Gan, Z., Narayan, R., Sadowski, A., Bu, D., & Bai, X. 2015, ApJ, 804, 101 CrossRefGoogle Scholar
Yuan, F., Yoon, D., Li, Y., Gan, Z., Ho, L. C., Guo, F. 2018, ApJ, 857, 121 CrossRefGoogle Scholar