Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T01:57:11.770Z Has data issue: false hasContentIssue false

The Outer Galactic Halo As Probed By RR Lyr Stars From the Palomar Transient Facility + Keck

Published online by Cambridge University Press:  09 May 2016

Judith Cohen
Affiliation:
California Institute of Technology, Palomar Observatory, Mail Code 249-17, Pasadena, Ca., 91125, USA email: [email protected]
Branimir Sesar
Affiliation:
California Institute of Technology, Palomar Observatory, Mail Code 249-17, Pasadena, Ca., 91125, USA email: [email protected] Max Planck Institute for Astronomy, Konigstühl 17, D-69117, Heidelberg, Germany email: [email protected]
Sophianna Banholzer
Affiliation:
California Institute of Technology, Palomar Observatory, Mail Code 249-17, Pasadena, Ca., 91125, USA email: [email protected]
the PTF Collaboration
Affiliation:
California Institute of Technology, Palomar Observatory, Mail Code 249-17, Pasadena, Ca., 91125, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present initial results from our study of the outer halo of the Milky Way using a large sample of RR Lyr(ab) variables datamined from the archives of the Palomar Transient Facility. Of the 464 RR Lyr in our sample with distances exceeding 50 kpc, 62 have been observed spectroscopically at the Keck Observatory. vr and σ(vr) are given as a function of distance between 50 and 110 kpc, and a very preliminary rather low total mass for the Milky Way out to 110 kpc of ~7±1.5×1011M is derived from our data.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Brown, W. R., Geller, M. J., Kenyon, S. J., & Diaferio, A., 2010, AJ, 139, 59CrossRefGoogle Scholar
Deason, A. J., McCarthy, I. G., Font, A. S.et al. 2011, MNRAS, 415, 2607Google Scholar
Deason, A. J., Belokurov, V., Evans, N. W.et al. 2012b, MNRAS, 425, 2840Google Scholar
Deason, A. J., Belokurov, V., Koposov, S. E., & Rockosi, C., 2014, ApJ, 787, 30Google Scholar
Evans, N. W., An, J., & Deason, A. J., 2011, ApJL, 730, L26Google Scholar
Faber, S., Phillips, A. C., Kibrick, R. I.et al. 2003, SPIE, 4841, 1657Google Scholar
Gnedin, O. Y., Brown, W. R., Geller, M. J., & Kenyon, S., 2010, ApJL, 720, L108Google Scholar
Kaffle, P. R., Sharma, S., Lewis, G. F., & Bland-Hawthorn, J., 2012, ApJ, 761, A98CrossRefGoogle Scholar
Kaffle, P. R., Sharma, S., Lewis, G. F.et al. 2014, ApJ, 794, A59Google Scholar
Law, N. M., Kulkarni, S. R., Dekany, R. G.et al. 2009, PASP, 121, 1395Google Scholar
Navarro, J. F., Frenk, C. S., & White, S. M., 1996, ApJ, 462, 563Google Scholar
Rau, A., Kulkarni, S. R., Law, N. M.et al. 2009, PASP, 121, 1334Google Scholar
Schlegel, D., Finbeiner, D. P., & Davis, M., 1998, ApJ, 500, 525Google Scholar
Sesar, B., 2012, AJ, 144, A114Google Scholar
Sesar, B., Banholzer, S. R., Cohen, J. G.et al. 2014, ApJ, 793, A135CrossRefGoogle Scholar
Watkins, L. L., Evans, N. W., & An, J. H., 2010, MNRAS, 406, 264Google Scholar
Williams, A. A. & Evans, N. W., 2015, MNRAS, 454, 698Google Scholar
Xue, X. X., Rix, H.-W., Zhao, G.et al. 2008, ApJ, 684, 1143Google Scholar
Xue, X. X., Rix, H.-W., Yanny, B.et al. 2011, ApJ, 738, A79Google Scholar
Xue, X. X., Ma, Z., Rix, H.-W.et al. 2014, ApJ, 784, 170CrossRefGoogle Scholar
Xue, X. X., Rix, H. W., Ma, Z., Morrison, H., Bovy, J., Sesar, B. & Janesh, H., 2015, ApJ, 809, 144Google Scholar