Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T14:35:46.108Z Has data issue: false hasContentIssue false

Origin of debris disks and the supply of metals in DZ white dwarfs

Published online by Cambridge University Press:  01 October 2007

Y. Wang
Affiliation:
Department of Astronomy, Peking University, 100871, Beijing, China, email: [email protected]
R. B. Dong
Affiliation:
Department of Astronomy, Peking University, 100871, Beijing, China, email: [email protected]
D. N. C. Lin
Affiliation:
Kavli Institute of Astronomy and Astrophysics, Peking University, 100871, Beijing, China email: [email protected] Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA email: [email protected]
X. W. Liu
Affiliation:
Department of Astronomy, Peking University, 100871, Beijing, China, email: [email protected] Kavli Institute of Astronomy and Astrophysics, Peking University, 100871, Beijing, China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We discuss the dynamical evolution of minor planetary bodies in the outer regions of planetary systems around the progenitors of DZ white dwarfs. We show that during the planetary-nebula phase of these stars, mass loss can lead to the expansion of all planetary bodies. The orbital eccentricity of the minor bodies, as relics of planetesimals, may be largely excited by the perturbation due to both gas drag effects and nearby gas giant planets. Some of these bodies migrate toward the host star, while others are scattered out of the planetary system. The former have modest probability of being captured by the sweeping secular resonances of giant planets, and induced to migrate toward the host star. When they venture close to their host stars, their orbits are tidally circularized so that they form compact disks where they may undergo further collisionally driven evolution. During the subsequent post main sequence evolution of their host stars, this process may provide an avenue which continually channels heavy elements onto the surface of the white dwarfs. We suggest that this scenario provides an explanation for the recently discovered Calcium line variation in G29-38.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Aarseth, S. J., Lin, D. N. C., & Palmer, P. L. 1993, ApJ, 403, 351CrossRefGoogle Scholar
Brasser, R. & Lehto, H. J. 2002, MNRAS, 334, 241CrossRefGoogle Scholar
Brasser, R., Duncan, M. J., & Levison, H. F. 2007, Icarus, 191, 413CrossRefGoogle Scholar
Chambers, J. E. 1999, A Hybrid Symplectic Integrator that Permits Close Encounters between Massive Bodies, MNRAS, 304, 793CrossRefGoogle Scholar
Debes, J. H. & Sigurdsson, S. 2002, ApJ, 572, 556CrossRefGoogle Scholar
Duncan, M. J., Kirsh, D., Capobianco, C., Brasser, R., & Levison, H. F. 2007, American Astronomical Society, DPS meeting, 39, 60.01Google Scholar
Duncan, M. J., Kirsh, D., Brasser, R., & Levison, H. 2007, American Astronomical Society, DDA meeting, 38, 6.05Google Scholar
Dupuis, J., Fontaine, G., Pelletier, C., & Wesemael, F. 1992, ApJS, 82, 505CrossRefGoogle Scholar
Gomes, R., Levison, H. F., Tsiganis, K., & Morbidelli, A. 2005, Nature, 435, 466CrossRefGoogle Scholar
Gu, P. G., Lin, D. N. C., & Bodenheimer, P. H. 2003, ApJ, 588, 509CrossRefGoogle Scholar
von Hippel, T. & Thompson, S. E. 2007, ApJ, 661, 477CrossRefGoogle Scholar
Ida, S. & Lin, D. N. C. 1996, AJ, 112,1239CrossRefGoogle Scholar
Ida, S. & Lin, D. N. C. 2004, ApJ, 604,388CrossRefGoogle Scholar
Ida, S. & Lin, D. N. C. 2007, ApJ, 626,1045CrossRefGoogle Scholar
Jiang, I., Duncan, M., & Lin, D. N. C. 2006, RevMexAA(SC), 21, 217Google Scholar
Jura, M. 2003, ApJ, 584, L91CrossRefGoogle Scholar
Koester, D., Provencal, J., & Shipman, H. L. 1997, A&A, 320, L57Google Scholar
Koester, D. & Wilken, D. 2006, A&A, 453, 1051Google Scholar
Kokubo, E. & Ida, S. 1996, Icarus, 123, 180CrossRefGoogle Scholar
Kokubo, E. & Ida, S. 2000, Icarus, 143, 15CrossRefGoogle Scholar
Kokubo, E. & Ida, S. 2002, ApJ, 581, 666CrossRefGoogle Scholar
Lee, M. H. & Peale, S. J. 2003, ApJ, 592, 1201CrossRefGoogle Scholar
Levison, H. F. et al. 2001, Icarus, 151, 286CrossRefGoogle Scholar
Lin, D. N. C & Papaloizou, J. C. B. 1986, ApJ, 309, 846CrossRefGoogle Scholar
Lucas, P. W. & Roche, P. F. 2000, MNRAS, 314, 858CrossRefGoogle Scholar
Murray, C. D. & Dermott, S. F. 1999, Solar system Dynamcis, Cambridge Unversity.Google Scholar
Nagasawa, M. & Ida, S. 2000, AJ, 120, 3311CrossRefGoogle Scholar
Nagasawa, M., Ida, S., & Tanaka, H. 2002, Icarus, 159, 322CrossRefGoogle Scholar
Nagasawa, M., Lin, D. N. C., & Ida, S. 2003, ApJ, 586, 1374CrossRefGoogle Scholar
Nagasawa, M., Lin, D. N. C., & Thommes, E. 2005, ApJ, 635, 578CrossRefGoogle Scholar
Palmer, P. L., Lin, D. N. C., & Aarseth, S. J. 1993, ApJ, 403, 336CrossRefGoogle Scholar
Zhou, J. L., Lin, D. N. C., & Sun, Y. S. 2007, ApJ, 666, 447CrossRefGoogle Scholar
Zuckerman, B., Koester, D., Reid, I. N., & Hünsch, M. 2003, ApJ, 596, 477CrossRefGoogle Scholar