Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T04:28:48.588Z Has data issue: false hasContentIssue false

Organic matter in space - An overview

Published online by Cambridge University Press:  01 February 2008

Ewine F. van Dishoeck*
Affiliation:
Leiden Observatory, Leiden UniversityP.O. Box 9513, NL–2300 RA Leiden, the Netherlands email: [email protected] Max-Planck Institute für Extraterrestrische Physik, Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Organic compounds are ubiquitous in space: they are found in diffuse clouds, in the envelopes of evolved stars, in dense star-forming regions, in protoplanetary disks, in comets, on the surfaces of minor planets, and in meteorites and interplanetary dust particles. This brief overview summarizes the observational evidence for the types of organics found in these regions, with emphasis on recent developments. The Stardust sample-return mission provides the first opportunity to study primitive cometary material with sophisticated equipment on Earth. Similarities and differences between the types of compounds in different regions are discussed in the context of the processes that can modify them. The importance of laboratory astrophysics is emphasized.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Acke, B. & van den Ancker, M. E. 2004, A&A, 426, 151Google Scholar
A'Hearn, M., et al. 2005, Science, 310, 258CrossRefGoogle Scholar
Bernstein, M. P., Cruikshank, D. P., & Sandford, S. A. 2005, Icarus, 179, 527CrossRefGoogle Scholar
Bisschop, S. E., Fuchs, G. W., Boogert, A. C. A., van Dishoeck, E. F., & Linnartz, H. 2007a, A&A, 470, 749Google Scholar
Bisschop, S. E., Fuchs, G. W., van Dishoeck, E. F., & Linnartz, H. 2007b, A&A, 474, 1061Google Scholar
Bisschop, S. E., Jørgensen, J. K., van Dishoeck, E. F., & de Wachter, E. B. M. 2007c, A&A, 465, 913Google Scholar
Bockelée-Morvan, D., Crovisier, J., Mumma, M. J., & Weaver, H. A. 2006, in: Festou, M.C. et al. (eds.), Comets II, (Univ. of Arizona), p. 391Google Scholar
Bockelée-Morvan, D., et al. 2000, A&A, 353, 1101Google Scholar
Boogert, A. C. A., et al. 2008, ApJ, 678, 985CrossRefGoogle Scholar
Botta, O. & Bada, J.L. 2002, Surveys Geophys., 23, 411CrossRefGoogle Scholar
Bottinelli, S., Ceccarelli, C., Williams, J. P., & Lefloch, B. 2007, A&A, 463, 601Google Scholar
Bradley, J., et al. 2005, Science, 307, 244CrossRefGoogle Scholar
Brownlee, D., et al. 2006, Science, 314, 1716CrossRefGoogle Scholar
Carr, J. S. & Najita, J. 2008, Science, 319, 1504CrossRefGoogle Scholar
Cazaux, S., et al. 2003, ApJ (Letters), 593, L51CrossRefGoogle Scholar
Charnley, S. B., Tielens, A. G. G. M., & Millar, T. J. 1992, ApJ (Letters), 399, L71CrossRefGoogle Scholar
Chastaing, D., Le Picard, S. D., Sims, I. R., & Smith, I. W. M. 2001, A&A, 365, 241Google Scholar
Clemett, S., et al. 2007, LPI, 1338, 2091Google Scholar
Cody, G. D. & Alexander, C. M. O. 2005, Geochimica et Cosmochimica Acta, 69, 1085CrossRefGoogle Scholar
Collings, M. P., et al. 2004, MNRAS, 354, 1133CrossRefGoogle Scholar
Cronin, J. R. & Chang, S. 1993, in: Greenberg, J.M. et al. (eds.), The chemistry of life's origin, (Dordrecht: Kluwer), p. 209CrossRefGoogle Scholar
Cruikshank, D. P., Imanaka, H., & Dalle Ore, C. M. 2005, Adv. Space Res., 36, 178CrossRefGoogle Scholar
Dartois, E., et al. 2007, A&A, 463, 635Google Scholar
Debes, J. H., Weinberger, A. J., & Schneider, G. 2008, ApJ (Letters), 673, L191CrossRefGoogle Scholar
Draine, B. T. 2003, ARA&A, 41, 241Google Scholar
Duley, W. W. & Williams, D. A. 1983, MNRAS, 205, 67CrossRefGoogle Scholar
Dzhonson, A., Jochnowitz, E. B., & Maier, J. P. 2007, J. Phys. Chem. A, 111, 1187CrossRefGoogle Scholar
Ehrenfreund, P. & Charnley, S. B. 2000, ARA&A, 38, 427Google Scholar
Ehrenfreund, P., Irvine, W., Becker, L., et al. 2002, Rep. Prog. Phys., 65, 1427CrossRefGoogle Scholar
Ehrenfreund, P. & Sephton, M. A. 2006, Faraday Discuss., 133, 277CrossRefGoogle Scholar
Elsila, J. E., Dworkin, J. P., Bernstein, M. P., Martin, M. P., & Sandford, S. A. 2007, ApJ, 660, 911CrossRefGoogle Scholar
Flynn, G. J., et al. 2000, Bioastronomy 99, p. 191Google Scholar
Flynn, G. J., et al. 2006, Science, 314, 1735CrossRefGoogle Scholar
Foing, B. H., & Ehrenfreund, P. 1997, A&A (Letters), 317, L59Google Scholar
Geers, V. C., Augereau, J.-C., Pontoppidan, K. M., et al. 2006, A&A, 459, 545Google Scholar
Geers, V.C., Pontoppidan, K.M., van Dishoeck, E. F., et al. 2007a, A&A (Letters) 469, L35Google Scholar
Geers, V. C., et al. 2007b, A&A, 476, 279Google Scholar
Geers, V. C., et al. 2008, A&A, submittedGoogle Scholar
Geppert, W. D., et al. 2004, ApJ, 613, 1302CrossRefGoogle Scholar
Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A., & Tielens, A. G. G. M. 2004, ApJS, 151, 35CrossRefGoogle Scholar
Goto, M., et al. 2007, ApJ, 662, 389CrossRefGoogle Scholar
Habart, E., Natta, A., & Krügel, E. 2004, A&A, 427, 179Google Scholar
Hobbs, L. M., et al. 2008, ApJ, in pressGoogle Scholar
Hollis, J. M., Lovas, F. J., Jewell, P. R., & Coudert, L. H. 2002, ApJ (Letters), 571, L59CrossRefGoogle Scholar
Hudgins, D. M., & Allamandola, L. J. 1999, ApJ (Letters), 516, L41CrossRefGoogle Scholar
Hudgins, D. M., Bauschlicher, C. W., & Allamandola, L. J. 2005, ApJ, 632, 316CrossRefGoogle Scholar
Hudson, R. L., & Moore, M. H. 2000, Icarus, 145, 661CrossRefGoogle Scholar
Imanaka, H., et al. 2004, Icarus, 168, 344CrossRefGoogle Scholar
Jaeger, C., Molster, F. J., Dorschner, J., Henning, Th., Mutschke, H., & Waters, L. B. F. M. 1998, A&A, 339, 904Google Scholar
Jaeger, C., Dorschner, J., Mutschke, H., Posch, Th., & Henning, Th. 2003, A&A, 408, 193Google Scholar
Jaeger, C., et al. 2006, ApJS, 166, 557CrossRefGoogle Scholar
Jones, A. P., Tielens, A. G. G. M., & Hollenbach, D. J. 1996, ApJ, 469, 740CrossRefGoogle Scholar
Kissel, J. & Krueger, F. R. 1987, Nature, 326, 755CrossRefGoogle Scholar
Kobayashi, H., Kawakita, H., Mumma, M. J., Bonev, B. P., Watanabe, J., & Fuse, T. 2007, ApJ (Letters), 668, L75CrossRefGoogle Scholar
Kwok, S. 2007a, Adv. Space Res., 40, 655CrossRefGoogle Scholar
Kwok, S. 2007b, Adv. Space Res., 40, 1613CrossRefGoogle Scholar
Lahuis, F., et al. 2006, ApJ (Letters), 636, L145CrossRefGoogle Scholar
Linnartz, H., et al. 2000, J. Chem. Phys., 112, 9777CrossRefGoogle Scholar
Lucas, R. & Liszt, H. S. 2000, A&A, 358, 1069Google Scholar
Maier, J. P., Walker, G. A. H., & Bohlender, D. A. 2004, ApJ, 602, 286CrossRefGoogle Scholar
Marcelino, N., Cernicharo, J., et al. 2007, ApJ (Letters), 665, L127CrossRefGoogle Scholar
Markwick, A. J., Ilgner, M., Millar, T. J., & Henning, Th. 2002, A&A, 385, 632Google Scholar
Matthews, C. N., & Minard, R. D. 2006, Faraday Disc., 133, 393CrossRefGoogle Scholar
McCarthy, M. C., Gottlieb, C. A., Gupta, H., & Thaddeus, P. 2006, ApJ (Letters), 652, L141CrossRefGoogle Scholar
Mennella, V., Baratta, G. A., Colangeli, L., Palumbo, M., Rotundi, A., Bussoletti, E., & Strazzulla, G. 1997, ApJ, 481, 545CrossRefGoogle Scholar
Messenger, S., Nakamura-Messenger, K., Keller, L., Matrajt, G., Clemett, S., & Ito, M. 2007, Geochimica et Cosmochimica Acta, 71, 15Google Scholar
Muñoz-Caro, G. M., Ruiterkamp, R., Schutte, W. A., Greenberg, J. M., & Mennella, V. 2001, A&A, 367, 347Google Scholar
Muñoz-Caro, G. M. & Schutte, W. A. 2003, A&A, 412, 121Google Scholar
Muñoz-Caro, G. M., et al. 2006, A&A, 459, 147Google Scholar
Niemann, H. B., et al. 2005, Nature, 438, 779CrossRefGoogle Scholar
Öberg, K. I. et al. 2007, ApJ (Letters), 662, L23CrossRefGoogle Scholar
Öberg, K. I. et al. 2008, ApJ, 678, 1032CrossRefGoogle Scholar
Pendleton, Y. J. 2004, in: Witt, A. et al. (eds.), Astrophysics of Dust, (ASP Vol. 304), p. 573Google Scholar
Pendleton, Y. J., & Allamandola, L. J. 2002, ApJS, 138, 75CrossRefGoogle Scholar
Pety, J., et al. 2005, A&A, 435, 885Google Scholar
Posch, Th., Baier, A., Mutschke, H., & Henning, Th. 2007, ApJ, 668, 993CrossRefGoogle Scholar
Rouille, G., et al. 2007, J. Chem. Phys., 126, 174311CrossRefGoogle Scholar
Ruiterkamp, R., et al. 2005, A&A, 432, 515Google Scholar
Sandford, S. A., et al. 2006, Science, 314, 1720CrossRefGoogle Scholar
Schilke, P., Benford, D. J., Hunter, T. R., Lis, D. C., & Phillips, T. G. 2001, ApJS, 132, 281CrossRefGoogle Scholar
Sloan, G.C., et al. 2005, ApJ, 632, 956CrossRefGoogle Scholar
Smith, I. W. M., Sage, A. M., Donahue, N. M., Herbst, E., & Quan, D. 2006, Faraday Discussions, 133, 137CrossRefGoogle Scholar
Snow, T. P., & McCall, B. J. 2006, ARA&A, 44, 367Google Scholar
Song, I.-O., Kerr, T. H., McCombie, J., & Sarre, P. J. 2003, MNRAS (Letters), 346, L1CrossRefGoogle Scholar
Tan, K. F., & Salama, F. 2005, J. Chem. Phys., 123, 14312CrossRefGoogle Scholar
Tielens, A. G. G. M. 2008, ARA&A, in pressGoogle Scholar
van Winckel, H., Cohen, M., & Gull, T. R. 2002, A&A, 390, 147Google Scholar
van Hemert, M. C. & van Dishoeck, E.F. 2008, Chem. Phys., 343, 292CrossRefGoogle Scholar
Visser, R., et al. 2007, A&A, 466, 229Google Scholar
Watanabe, N., Nagaoka, A., Shiraki, T., & Kouchi, A. 2004, ApJ, 616, 638CrossRefGoogle Scholar
Wyrowski, F., Schilke, P., Walmsley, C. M., & Menten, K. M. 1999, ApJ (Letters), 514, L43CrossRefGoogle Scholar
Yan, L., et al. 2005, ApJ, 628, 604CrossRefGoogle Scholar