Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T06:20:53.712Z Has data issue: false hasContentIssue false

Organic compounds in galaxies

Published online by Cambridge University Press:  01 February 2008

Takashi Onaka
Affiliation:
Department of Astronomy, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan email: [email protected], [email protected], [email protected]
Hiroko Matsumoto
Affiliation:
Department of Astronomy, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan email: [email protected], [email protected], [email protected]
Itsuki Sakon
Affiliation:
Department of Astronomy, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan email: [email protected], [email protected], [email protected]
Hidehiro Kaneda
Affiliation:
Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 229-8510, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The unidentified infrared (UIR) emission bands in the near- to mid-infrared are thought to originate from organic compounds in the interstellar medium. Recent space observations with Spitzer and AKARI have clearly revealed that the UIR bands are commonly seen in external galaxies, including elliptical galaxies, except for very metal-poor dwarf galaxies. They are also detected in extended structures of galaxies, such as extra-planar components and filaments produced by outflows, suggesting that the band carriers are ubiquitous organic compounds in galaxies. Since the UIR bands are prominent features in the infrared spectrum of galaxies and are linked to the star-formation activity, it is highly important to understand the nature, formation, processing, and destruction of the UIR band carriers in galaxies. While there is no systematic variation detected in the UIR spectrum in normal galaxies, significantly low values are derived for the ratio of the 7.7 μm to 11.2 μm bands in elliptical galaxies as well as in galaxies with low-luminosity AGNs compared to normal star-forming galaxies. Relatively low band ratios are also seen in the UIR band spectrum of extended structures in galaxies. If the same mechanism leads to the low band ratio, it would provide important information on the band carrier properties. It should also be noted that the band carriers are believed to be destroyed in a short time scale in environments where low band ratios are detected. The survival and supply processes in these environments are a key to understand the nature of the band carriers.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Allain, T., Leach, S., & Sedlmayr, E. 1996, A&A, 305, 602Google Scholar
Boersma, C., Hony, S., & Tielens, A. G. G. M. 2006, A&A, 447, 213Google Scholar
Chan, K.-W. et al. 2001, ApJ, 546, 273CrossRefGoogle Scholar
Cherchneff, I., Barker, J. R., & Tielens, A. G. G. M. 1992, ApJ, 401, 269CrossRefGoogle Scholar
Dwek, E. & Arendt, R. G. 1992, ARAA, 30, 11CrossRefGoogle Scholar
Engelbracht, C. W. et al. 2006, ApJ (Letters), 642, L127CrossRefGoogle Scholar
Engelbracht, C. W. et al. 2008, ApJ, 678, 804CrossRefGoogle Scholar
Frenklach, M. & Feigelson, E. D. 1989, ApJ, 341, 372CrossRefGoogle Scholar
Galliano, F., Dwek, E., & Chanial, P. 2008a, ApJ, 672, 214CrossRefGoogle Scholar
Galliano, F., Madden, S. C., Tielens, A. G. G. M., Peeters, E., & Jones, A. P. 2008b, ApJ, 679, 310CrossRefGoogle Scholar
Greenberg, J. M. et al. 2000, ApJ (Letters), 531, L71CrossRefGoogle Scholar
Greggio, L. et al. 1998, ApJ, 504, 725CrossRefGoogle Scholar
Helou, G. et al. 2000, ApJ (Letters), 532, L21CrossRefGoogle Scholar
Herbst, E. 1991, ApJ, 366, 133CrossRefGoogle Scholar
Hunter, D. A., Hawley, W. N., & Gallagher, J. S. 1993, AJ, 106, 1797CrossRefGoogle Scholar
Houck, J. R. et al. 2004, ApJS, 154, 18CrossRefGoogle Scholar
Irwin, J. A., Kennedy, H., Parkin, T., & Madden, S. 2007, A&A, 474, 461Google Scholar
Irwin, J. A. & Madden, S. 2006, A&A, 445, 123Google Scholar
Jones, A. P., Tielens, A. G. G. M., & Hollenbach, D. J. 1996, ApJ, 469, 740CrossRefGoogle Scholar
Kahanpää, J., Mattila, K., Lehtinen, K., Leinert, C., & Lemke, D. 2003, A&A, 405, 999Google Scholar
Kaneda, H., Onaka, T., & Sakon, I. 2005, ApJ (Letters), 632, L83CrossRefGoogle Scholar
Kaneda, H., Onaka, T., & Sakon, I. 2007, ApJ (Letters), 666, L21CrossRefGoogle Scholar
Kaneda, H., Onaka, T., Sakon, I., Matsumoto, H., & Suzuki, I. 2008a, this volumeGoogle Scholar
Kaneda, H., Onaka, T., Sakon, I., Kitayama, T., Okada, Y., & Suzuki, T. 2008b, ApJ, in pressGoogle Scholar
Kennicutt, R. C. Jr. et al. 2003, PASP, 115, 928CrossRefGoogle Scholar
Madden, S., Galliano, F., Jones, A. P., & Sauvage, M. 2006, A&A 446, 877Google Scholar
Martin, C. L. 1998, ApJ, 491, 561CrossRefGoogle Scholar
Martin, C. L., Kobulnicky, H. A., & Heckman, T. M. 2002, ApJ, 574, 663CrossRefGoogle Scholar
Matsumoto, H. et al. 2008a, ApJ, 677, 1120CrossRefGoogle Scholar
Matsumoto, H., Onaka, T., Sakon, I., & Kaneda, H. 2008b, this volumeGoogle Scholar
Mühle, S., Klein, U., Wilcots, E. M., & Hüttenmeister, S. 2005, AJ, 130, 524CrossRefGoogle Scholar
Murakami, H. et al. 2007, PASJ, 59, S369CrossRefGoogle Scholar
O'Halloran, B., Satyapal, S., & Dudik, R. P. 2006, ApJ, 641, 795CrossRefGoogle Scholar
Ohyama, Y. et al. 2007, PASJ, 59, S411CrossRefGoogle Scholar
Onaka, T. 2000, Adv. Sp. Res., 25, 2167CrossRefGoogle Scholar
Onaka, T. 2004, in: Witt, A. N., Clayton, G. C., & Draine, B. T. (eds.), Astrophysics of Dust, ASP Conf. ser. 309, p. 163Google Scholar
Onaka, T., Yamamura, I., Tanabé, T., Roellig, T. L., & Yuen, L. 1996, PASJ (Letters), 48, L59CrossRefGoogle Scholar
Onaka, T. et al. 2007, PASJ, 59, S401CrossRefGoogle Scholar
Ott, J., Walter, F., & Brinks, E. 2005a, MNRAS, 358, 1423CrossRefGoogle Scholar
Ott, J., Walter, F., & Brinks, E. 2005b, MNRAS, 358, 1453CrossRefGoogle Scholar
Peeters, E., Spoon, H. W. W., & Tielens, A. G. G. M. 2004, ApJ, 613, 986CrossRefGoogle Scholar
Peeters, E. et al. 2002, A&A, 390, 1089Google Scholar
Sakon, I. et al. 2004, ApJ, 609, 203 (Erratum: ApJ, 625, 1062)CrossRefGoogle Scholar
Sakon, I. et al. 2007, PASJ, 59, S483CrossRefGoogle Scholar
Shi, Y. et al. 2007, ApJ, 669, 841CrossRefGoogle Scholar
Smith, J. D. et al. 2007, ApJ, 656, 770CrossRefGoogle Scholar
Speck, A., Barlow, M., Wesson, R., Glayton, G., & Volk, K. 2008, this volumeGoogle Scholar
Stil, J. M. & Israel, F. P. 1998, A&A, 337, 64Google Scholar
Tajiri, Y. Y. et al. 2008, in: Chary, R., Teplitz, H. I., & Sheth, K. (eds.), Infrared Diagnostics of Galaxy Evolution, ASP Conf. ser. 381, p. 50Google Scholar
Tielens, A. G. G. M., McKee, C. F., Seab, C. G., & Hollenbach, D. J. 1994, ApJ, 431, 321CrossRefGoogle Scholar
Tokura, D. et al. 2006, ApJ, 648, 355CrossRefGoogle Scholar
Walter, F. et al. 2007, ApJ, 661, 102CrossRefGoogle Scholar
Werner, M. W. et al. 2004, ApJS, 154, 309CrossRefGoogle Scholar
Westmoquette, M. S., Smith, L. J., & Gallagher, J. S. 2008, MNRAS, 383, 864CrossRefGoogle Scholar
Wu, Y. et al. 2006, ApJ, 639, 157CrossRefGoogle Scholar