Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-02T20:51:16.007Z Has data issue: false hasContentIssue false

The Orbital Period Distribution of Cataclysmic Variables Found by the SDSS

Published online by Cambridge University Press:  23 April 2012

John Southworth
Affiliation:
Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK
Boris T. Gänsicke
Affiliation:
Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
Elmé Breedt
Affiliation:
Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The orbital period is one of the most accessible observables of a cataclysmic variable. It has been a concern for many years that the orbital period distribution of the known systems does not match that predicted by evolutionary theory. The sample of objects discovered by the Sloan Digital Sky Survey has changed this: it shows the long-expected predominance of short-period objects termed the ‘period spike’. The minimum period remains in conflict with theory, suggesting that the angular momentum loss mechanisms are stronger than predicted.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Dillon, M., et al. , 2008, MNRAS, 386, 1568CrossRefGoogle Scholar
Gänsicke, B. T., et al. , 2009, MNRAS, 397, 2170CrossRefGoogle Scholar
Littlefair, S. P., Dhillon, V. S., Marsh, T. R., Gänsicke, B. T., Southworth, J., & Watson, C. A. 2006, Science, 314, 1578CrossRefGoogle Scholar
Littlefair, S. P., Dhillon, V. S., Marsh, T. R., Gänsicke, B. T., Southworth, J., Baraffe, I., Watson, C. A., & Copperwheat, C. 2008, MNRAS, 388, 1582CrossRefGoogle Scholar
Rappaport, S., Joss, P. C., & Webbink, R. F. 1982, ApJ, 254, 616CrossRefGoogle Scholar
Ritter, H. & Kolb, U. 2003, A&A, 404, 301Google Scholar
Southworth, J. & Copperwheat, C. M. 2011, The Observatory, 131, 66Google Scholar
Southworth, J., Gänsicke, B. T., Marsh, T. R., de Martino, D., Hakala, P., Littlefair, S., Rodriguez-Gil, P., & Szkody, P. 2006, MNRAS, 373, 687CrossRefGoogle Scholar
Southworth, J., Gänsicke, B. T., Marsh, T. R., de Martino, D., & Aungwerojwit, A. 2007a, MNRAS, 378, 635CrossRefGoogle Scholar
Southworth, J., Marsh, T. R., Gänsicke, B. T., Aungwerojwit, A., de Martino, D., & Hakala, P. 2007b, MNRAS, 382, 1145CrossRefGoogle Scholar
Southworth, J., et al. , 2008a, MNRAS, 391, 591CrossRefGoogle Scholar
Southworth, J., Townsley, D. M., & Gänsicke, B. T. 2008b, MNRAS, 388, 709CrossRefGoogle Scholar
Southworth, J., Hickman, R. D. G., Marsh, T. R., Rebassa-Mansergas, A., Gänsicke, B. T., Copperwheat, C. M., & Rodriguez-Gil, P. 2009, A&A, 507, 929Google Scholar
Southworth, J., Copperwheat, C. M., Gänsicke, B. T., & Pyrzas, S. 2010a, A&A, 510, A100Google Scholar
Southworth, J., Marsh, T. R., Gänsicke, B. T., Steeghs, D., & Copperwheat, C. M. 2010b, A&A, 524, A86Google Scholar