Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T20:31:16.640Z Has data issue: false hasContentIssue false

Opportunities for maser studies with the Square Kilometre Array

Published online by Cambridge University Press:  01 March 2007

Anne J. Green
Affiliation:
School of Physics, University of Sydney, NSW 2006, Australia email: [email protected]
Willem A. Baan
Affiliation:
ASTRON, 7991PD Dwingeloo, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Square Kilometre Array (SKA) is the radio telescope of the next generation, providing an increase in sensitivity and angular resolution of two orders of magnitude over existing telescopes. Currently, the SKA is expected to span the frequency range 0.1-25 GHz with capabilities including a wide field-of-view and measurement of polarised emission. Such a telescope has enormous potential for testing fundamental physical laws and producing transformational discoveries. Important science goals include using H2O megamasers to make precise estimates of H0, which will anchor the extragalactic distance scale, and to probe the central structures of accretion disks around supermassive black holes in AGNs, to study OH megamasers associated with extreme starburst activity in distant galaxies and to study with unprecedented precision molecular gas and star formation in our Galaxy.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Baan, W. A. 1989, ApJ 338, 804CrossRefGoogle Scholar
Baan, W. A., Rhoads, J., Fisher, K., Altschuler, D. R. & Haschick, A., 1992, ApJL, 396, L99CrossRefGoogle Scholar
Barvainis, R. & Antonucci, R. 2005, ApJ (Letters) 628, L89CrossRefGoogle Scholar
Briggs, F. H. 1998, A&A 336, 815Google Scholar
Churchwell, E., Walmsley, C. M. & Cesaroni, R. 1990, A&AS 83, 119Google Scholar
Claussen, M. J., Heiligman, G. M., & Lo, K.Y 1984, Nature 310, 298CrossRefGoogle Scholar
Claussen, M. J., Diamond, P. J., Braatz, J. A., Wilson, A. S. & Henkel, C. 1998, ApJL 500, L129CrossRefGoogle Scholar
Darling, J. & Giovanelli, R., 2001, AJ, 121, 1278CrossRefGoogle Scholar
Frail, D. A., Goss, W. M., Reynoso, E. M., Giacani, E. B., Green, A. J. & Otrupcek, R. 1996, AJ 111, 1651CrossRefGoogle Scholar
Haschick, A. D., Baan, W. A. & Peng, E. W. 1994, ApJL, 437, L35CrossRefGoogle Scholar
Henkel, C., Peck, A. B., Tarchi, A., Nagar, N. M. et al. 2005, A&A 436, 75Google Scholar
Henkel, C. & Wilson, T. L. 1990, A&A 229, 431Google Scholar
Herrnstein, J. R., Moran, J. M., Greenhill, L. J., Diamond, P. J., et al. 1999 Nature 400, 539CrossRefGoogle Scholar
Klöckner, H.-R., Baan, W. A., & Garrett, M. A. 2003, Nature, 421, 821CrossRefGoogle Scholar
Lonsdale, C. J., Diamond, P. J., Thrall, H., Smith, H. E. & Lonsdale, C. J. 2006, ApJ, 647, 185CrossRefGoogle Scholar
Minier, V., Booth, R. S. & Conway, J. 2000, A&A 362, 1093Google Scholar
Nakai, N., Inoue, M., & Miyoshi, M. 1993, Nature 361, 45CrossRefGoogle Scholar
Pihlström, Y. M., Baan, W. A., Darling, J., Klöckner, H.-R. 2005, ApJ, 618, 705CrossRefGoogle Scholar
Rovilos, E., Diamond, P. J., Lonsdale, C. J., et al. 2003, MNRAS, 342, 373CrossRefGoogle Scholar
Rovilos, E., Diamond, P. J., Lonsdale, C. J. et al. 2005, MNRAS, 359, 827CrossRefGoogle Scholar
Tarchi, A., Henkel, C., Peck, A. B., Menten, K. M. 2002, A&A 389, L39Google Scholar
Tarchi, A., Henkel, C., Chiaberge, M., Menten, K. M. 2003, A&A 407, L33Google Scholar
Townsend, R. H.D., Ivison, R. J., Smail, I., Blain, A. W., Frayer, D. T., 2001, MNRAS 328, L17CrossRefGoogle Scholar
Walsh, A. J., Burton, M. G., Hyland, A. R. & Robinson, G. 1998, MNRAS 301, 640CrossRefGoogle Scholar
Xu, Y., Reid, M. J., Zheng, X. W., Menten, K. M. 2006, Science 311, 54CrossRefGoogle Scholar
Yusef-Zadeh, F., Roberts, D. A., Goss, W. M., Frail, D. A., Green, A. J., 1996, ApJL 466, L25CrossRefGoogle Scholar