Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T09:03:20.885Z Has data issue: false hasContentIssue false

Opening again the debate: the transient nature of the circumnuclear disk

Published online by Cambridge University Press:  22 May 2014

M. A. Requena-Torres
Affiliation:
Max-Planck-Institut für Radioastronomie, Germany, email: [email protected]
E. A. C. Mills
Affiliation:
NRAO Socorro, USA
R. Güsten
Affiliation:
Max-Planck-Institut für Radioastronomie, Germany, email: [email protected]
M. R. Morris
Affiliation:
University of California, Los Angeles, USA
A. Weiss
Affiliation:
Max-Planck-Institut für Radioastronomie, Germany, email: [email protected]
J. Martín-Pintado
Affiliation:
CAB-INTA-CSIC, Spain
A. Harris
Affiliation:
Maryland University, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Despite many investigations, the physical characteristics of the molecular gas in the Galactic center circumnuclear disk (CND) remain a topic of debate. Its mass is highly uncertain, between 104 (from dust) and 105–6 M (derived from gas tracers), and depending on the probe, density estimates for the dense clumps are 105–8 cm−3 and gas temperatures run from 50 to a few hundred K. The range of physical parameters leaves open many questions about the nature and fate of the CND. Using several ground-based observatories, together with Herschel and SOFIA, we have studied the physical conditions of the dense clumps using CO, HCN and HCO+, finding that most of them are transient. Their densities are not large enough for them to be gravitationally bound in the tidal field in the center of our Galaxy.

Keywords

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Brandford, C. M., Stacey, G. J., Nikola, T., et al. 2005, ApJ 623, 866CrossRefGoogle Scholar
Christopher, M. H., Scoville, N. Z., Stolovy, S. R., et al. 2005, ApJ 622, 346CrossRefGoogle Scholar
Harris, A. I., Jaffe, D. T., Silber, M., & Genzel, R. 1985, ApJ 294, L93CrossRefGoogle Scholar
Genzel, R., Watson, D. M., Crawford, M. K., & Townes, C. H. 1985, ApJ 297, 766CrossRefGoogle Scholar
Genzel, R., Eisenhauer, F., & Gillessen, S. 2010, RvMP 82, 3121Google Scholar
Liu, H. B., Ho, P. T. P., Wright, M. C. H., et al. 2013, ApJ 770, L44CrossRefGoogle Scholar
Martín, S., Martín-Pintado, J., Montero-Castaño, M., Ho, P. T. P., & Blundell, R. 2012, A&A 539, A29Google Scholar
Montero-Castaño, M., Herrnstein, R. M., & Ho, P. 2009, ApJ 695, 1477CrossRefGoogle Scholar
Mills, E. A. C., Güsten, R., Requena-Torres, M. A., & Morris, M. R. 2013, ApJ 779, 47Google Scholar
Oka, T., Nagai, M., Kamegai, K., & Tanaka, K. 2011, ApJ 732, 120CrossRefGoogle Scholar
Requena-Torres, M. A., Güsten, R., Weiss, et al. 2012, A&A 542, L21Google Scholar
Smith, I. L. & Wardle, M. 2013, MNRAS, arXiv:1310.8429v1Google Scholar
Weiss, A., Downes, D., Neri, R., et al. 2007, A&A 467, 955Google Scholar