No CrossRef data available.
Published online by Cambridge University Press: 01 September 2007
The extensive stellar radial-velocity surveys of the WIYN Open Cluster Study now allow comprehensive studies of the solar-type hard-binary populations in open clusters as a function of age. We first describe an empirical “initial” hard-binary population as derived from the young open cluster NGC 2168 (M35). Given the limited analyses so far, the cluster binary population is indistinguishable from that of the field. We then compare the hard-binary population in the old open cluster NGC 188 to the binary population in the sophisticated N-body simulations of the old cluster M67 by Hurley et al. The binary populations in the cluster and the simulation show significant differences in binary frequency and fraction of circularized binaries, while otherwise showing similar orbital eccentricity distributions. Since the simulations were designed to match the encounter products in M67, such as blue stragglers, the large reduction in binary fraction indicated by the empirical results likely will also require changes in the simulation physics producing blue stragglers and other anomalous stars arising from stellar dynamics. We present three case studies of stars in open clusters which very likely are products of dynamical encounters between binaries and either single stars or other binaries: the M67 blue straggler S1082, the M67 sub-subgiant S1113, and the horizontal branch star 6819-3002 in the intermediate-age open cluster NGC 6819. Finally, we remind the reader of recent empirical results on the rates of tidal interactions, using tidal circularization periods in open clusters. Every indication is that current theories underestimate the effectiveness of tidal circularization, a result that need to be incorporated into dynamical simulations of dense stellar systems.