Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T18:37:54.000Z Has data issue: false hasContentIssue false

On the universality of void density profiles

Published online by Cambridge University Press:  12 October 2016

E. Ricciardelli
Affiliation:
Departament d'Astronomia i Astrofisica, Universitat de Valencia, c/ Dr. Moliner 50, E-46100 - Burjassot, València, Spain email: [email protected]
V. Quilis
Affiliation:
Departament d'Astronomia i Astrofisica, Universitat de Valencia, c/ Dr. Moliner 50, E-46100 - Burjassot, València, Spain email: [email protected] Centro de Estudios de Física del Cosmos de Aragón (CEFCA), Plaza San Juan 1, 44001 Teruel, Spain
J. Varela
Affiliation:
Observatori Astronòmic, Universitat de València, E-46980 Paterna, València, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The massive exploitation of cosmic voids for precision cosmology in the upcoming dark energy experiments, requires a robust understanding of their internal structure, particularly of their density profile. We show that the void density profile is insensitive to the void radius both in a catalogue of observed voids and in voids from a large cosmological simulation. However, the observed and simulated voids display remarkably different profile shapes, with the former having much steeper profiles than the latter. We ascribe such difference to the dependence of the observed profiles on the galaxy sample used to trace the matter distribution. Samples including low-mass galaxies lead to shallower profiles with respect to the samples where only massive galaxies are used, as faint galaxies live closer to the void centre. We argue that galaxies are biased tracers when used to probe the matter distribution within voids.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2016 

References

Hamaus, N., Sutter, P. M., & Wandelt, B. D., 2014, PhRvL, 112, 251302 Google Scholar
Lavaux, G. & Wandelt, B. D., 2012, ApJ, 754, 109 Google Scholar
Quilis, V., 2004, MNRAS, 352, 1426 Google Scholar
Nadathur, S. & Hotchkiss, S., 2013, arXiv, arXiv:1310.2791Google Scholar
Nadathur, S., Hotchkiss, S., Diego, J. M., Iliev, I. T., Gottlöber, S., Watson, W. A., & Yepes, G., 2014, arXiv, arXiv:1407.1295Google Scholar
Ricciardelli, E., Quilis, V., & Planelles, S., 2013, MNRAS, 434, 1192 Google Scholar
Ricciardelli, E., Quilis, V., & Varela, J., 2014, MNRAS, 440, 601 Google Scholar
Sutter, P. M., Lavaux, G., Wandelt, B. D., & Weinberg, D. H., 2012, ApJ, 761, 187 CrossRefGoogle Scholar
Varela, J., Betancort-Rijo, J., Trujillo, I., & Ricciardelli, E., 2012, ApJ, 744, 82 Google Scholar