Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T05:31:25.261Z Has data issue: false hasContentIssue false

On the role of asymmetries in the reversal of the solar magnetic field

Published online by Cambridge University Press:  18 July 2013

A. S. Brun
Affiliation:
Laboratoire AIM Paris-Saclay, CEA/Irfu Université Paris-Diderot CNRS/INSU, 91191 Gif-sur-Yvette, France email: [email protected]
M. L. Derosa
Affiliation:
Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover St. B/252, Palo Alto, CA 94304, USA
J. T. Hoeksema
Affiliation:
W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We study how the solar magnetic field evolves from antisymmetric (dipolar) to symmetric (quadrupolar) state during the course of its 11-yr cycle. We show that based on equatorial symmetries of the induction equation, flux transport solar mean field dynamo models excite mostly the antisymmetric (dipolar) family whereas a decomposition of the solar magnetic field data reveals that both families should be excited to similar amplitude levels. We propose an alternative solar dynamo solution based on North-South asymmetry of the meridional circulation to better reconcile models and observations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Abramowitz, M. & Stegun, I. A., eds. 1972, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (New York: Dover)Google Scholar
Brun, A. S., Miesch, M. S., & Toomre, J. 2004, ApJ, 614, 1073 Google Scholar
Charbonneau, P. 2010, Living Rev. Sol. Phys., 7, 3 CrossRefGoogle Scholar
DeRosa, M. L., Brun, A. S., & Hoeksema, J. T. 2012, ApJ 757 96 (DBH12)Google Scholar
Dikpati, M., Gilman, G. A., de Toma, G., & Ghosh, S. S. 2007, Sol. Phys., 245, 1 CrossRefGoogle Scholar
Gallet, B. & Pétrélis, F. 2009, Phys. Rev. E, 80, 035302 Google Scholar
Gubbins, D. & Zhang, K. 1993, Phys. Earth Planet. Inter. 75 225 (GZ93)Google Scholar
Hulot, G., Finlay, C. C., Constable, C. G., Olsen, N., & Mandea, M. 2010, Space Sci. Rev., 152, 159 CrossRefGoogle Scholar
Jouve, L. & Brun, A. S. 2007, A&A, 474, 239 Google Scholar
Leonhardt, R. & Fabian, K. 2007, Earth Planet. Sci. Lett., 253, 172 CrossRefGoogle Scholar
McFadden, P. L., Merrill, R. T., McElhinny, M. W., & Lee, S. 1991, J. Geophys. Res., 96, 3923 CrossRefGoogle Scholar
Ribes, J. C. & Nesme-Ribes, E. 1993, A&A, 276, 549 Google Scholar
Scherrer, P. H., Wilcox, J. M., Svalgaard, L., Duvall, T. L. Jr., Dittmer, P. H., & Gustafson, E. K. 1977, Sol. Phys., 54, 353 Google Scholar
Scherrer, P. H., Bogart, R. S., Bush, R. I., Hoeksema, J. T., Kosovichev, A. G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T. D., Title, A., Wolfson, C. J., & Zayer, I., MDI Engineering Team. 1995, Sol. Phys., 162, 129 CrossRefGoogle Scholar
Shiota, D., Tsuneta, S., Shimojo, M., et al. 2012, ApJ, 753, 157 Google Scholar
Sun, X., Liu, Y., Hoeksema, J. T., Hayashi, K., & Zhao, X. 2011, Sol. Phys., 270, 9 Google Scholar
Svalgaard, L., Duvall, T. L. Jr., & Scherrer, P. H. 1978, Sol. Phys., 58, 225 CrossRefGoogle Scholar
Tobias, S. M. 1997, A&A, 322, 1007 Google Scholar
Tobias, S. M. 2002, Astron. Nachr., 323, 417 3.0.CO;2-U>CrossRefGoogle Scholar