Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T21:04:19.887Z Has data issue: false hasContentIssue false

On the Progenitor of SNR 0509-67.5

Published online by Cambridge University Press:  17 January 2013

Ashley Pagnotta
Affiliation:
Department of Physics & Astronomy, Louisiana State University202 Nicholson Hall, Tower Dr., Baton Rouge, LA 70803 email: [email protected]
Bradley E. Schaefer
Affiliation:
Department of Physics & Astronomy, Louisiana State University202 Nicholson Hall, Tower Dr., Baton Rouge, LA 70803 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have used three independent methods to determine an accurate and precise geometric center of SNR 0509-67.5, at RA=05:09:31.208, DEC=−67:31:17.48 (J2000). This supernova, which occurred approximately 400 years ago in the Large Magellanic Cloud, was confirmed to be a Type Ia by Rest et al. (2005), Rest et al. (2008) based on spectra of a light echo from the eruption. If this supernova had a single-degenerate progenitor system, we would see the “leftover” companion star within a certain distance of the remnant's center. Accounting for an offset due to enhanced ISM in the west-southwest quadrant of the remnant, we find the eruption position to be at RA=05:09:30.976, DEC=−67:31:17.90; the error circle which should contain any possible ex-companion star has a radius of 1.60″ for 99.73% (3-sigma) containment. This accounts for the proper motion of the stars, the possibility of kicks from the supernova, and asymmetries in the explosion and remnant expansion. We find no possible ex-companion stars within this ellipse, to a limiting magnitude of V=26.9: there are no red giants, which precludes symbiotic progenitors, no subgiants, which when combined with the lack of red giants precludes recurrent nova progenitors, and no main sequence stars with mass greater than 1.16 solar masses (V brighter than 22.7 mag), which precludes persistent supersoft X-ray source progenitors. Indeed, all published SD models are eliminated, so we conclude that this particular Type Ia supernova had a double-degenerate progenitor.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Borkowski, K. J., et al. 2006, ApJ, 642, L141CrossRefGoogle Scholar
Canal, R., Mendez, J., & Ruiz-Lapuente, P. 2001, ApJ, 550, L53CrossRefGoogle Scholar
González Hernández, J. I., Ruiz-Lapuente, P., Filippenko, A. V., Foley, R. J., Gal-Yam, A., & Simon, J. D. 2009, ApJ, 691, 1Google Scholar
Hamuy, M., Phillips, M. M., Suntzeff, N. B., Schommer, R. A., Maza, J., & Avilés, R. 1996, AJ, 112, 2391Google Scholar
Hughes, J. P., et al. 1995, ApJ, 444, L81CrossRefGoogle Scholar
Ihara, Y., Ozaki, J., Doi, M., Shigeyama, T., Kashikawa, N., Komiyama, K., & Hattori, T. 2007, PASJ, 59, 811CrossRefGoogle Scholar
Kerzendorf, W. E., Schmidt, B. P., Asplund, M., Nomoto, K., Podsiadlowski, P., Frebel, A., Fesen, R. A., & Yong, D. 2009, ApJ, 701, 1665CrossRefGoogle Scholar
Marietta, E., Burrows, A., & Fryxell, B. 2000, ApJSupp, 128, 615Google Scholar
Pan, K.-C., Ricker, P. M., & Taam, R. E. 2010, ApJ, 715, 78Google Scholar
Perlmutter, S., et al. 1999, ApJ, 517, 565CrossRefGoogle Scholar
Piersanti, L., Gagliardi, S., Iben, I. Jr., & Tornambé, A. 2003, ApJ, 583, 885CrossRefGoogle Scholar
Rest, A., et al. 2005, Nature, 438, 1132CrossRefGoogle Scholar
Rest, A., et al. 2008, ApJ, 680, 1137Google Scholar
Riess, A.et al. 1998, AJ, 116, 1009Google Scholar
Ruiz-Lapuente, P., et al. 2004, Nature, 431, 1069Google Scholar
Warren, J. S. & Hughes, J. P. 2004, ApJ, 608, 261Google Scholar
Zaritsky, D., Harris, J., Thompson, I. B., & Grebel, E. K. 2004, AJ, 128, 1606Google Scholar