Hostname: page-component-7bb8b95d7b-nptnm Total loading time: 0 Render date: 2024-09-21T00:14:11.359Z Has data issue: false hasContentIssue false

On the presence of intermediate black holes in three globular clusters

Published online by Cambridge University Press:  11 March 2020

Holger Baumgardt
Affiliation:
School of Mathematics and Physics, The University of Queensland,St. Lucia, QLD 4072, Australia
Antonio Sollima
Affiliation:
INAF Osservatorio Astronomico di Bologna, via Gobetti 93/3, Bologna, 40129, Italy
Michael Hilker
Affiliation:
European Southern Observatory, Karl-Schwarzschild-Str.2, 85748 Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate whether the globular clusters 47 Tuc, ω Cen and NGC 6624 contain intermediate-mass black holes (IMBHs) by fitting a large grid of N-body simulations against their surface density and velocity dispersion profiles. In our simulations we vary the initial cluster size, the initial mass function and the initial density profile of the clusters as well as the mass fraction of a central intermediate-mass black hole. We find that the surface density and velocity dispersion profiles of all three clusters can be better reproduced by models that do not contain a central IMBH than by any of our IMBH models. If ω Cen and NGC 6624 contain any IMBHs at all, they have to be significantly less massive than suggested in the past.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Barth, A. J.et al. 2004, ApJ, 607, 90CrossRefGoogle Scholar
Baumgardt, H. 2017, MNRAS, 464, 2174CrossRefGoogle Scholar
Baumgardt, H. & Hilker, M. 2018, MNRAS, 478, 1520CrossRefGoogle Scholar
Baumgardt, H.et al. 2019, MNRAS, 482, 5138CrossRefGoogle Scholar
Baumgardt, H.et al. 2019, MNRAS, in pressGoogle Scholar
Fryer, C. L. 1999, ApJ, 522, 413CrossRefGoogle Scholar
Gebhardt, K.et al. 2000, ApJ, 539, L13CrossRefGoogle Scholar
Gieles, M.et al. 2018, MNRAS, 473, 4832CrossRefGoogle Scholar
Jalali, B.et al. 2012, A&A, 538, A19Google Scholar
King, I. 1962, AJ, 67, 471CrossRefGoogle Scholar
Kiziltan, B., Baumgardt, H., & Loeb, A. 2017, Nature, 542, 203CrossRefGoogle Scholar
Lin, D.et al. 2018, Nature Astronomy, 2, 656CrossRefGoogle Scholar
Mann, C.et al. 2019, ApJ, 875, 1CrossRefGoogle Scholar
Mieske, S.et al. 2013, A&A, 558, A14Google Scholar
Miller, M. C. & Hamilton, D. P. 2002, MNRAS, 330, 232CrossRefGoogle Scholar
Nitadori, K. & Aarseth, S. J. 2012, MNRAS, 424, 545CrossRefGoogle Scholar
Noyola, E. & Baumgardt, H. 2011, ApJ, 742, 52CrossRefGoogle Scholar
Noyola, E. & Gebhardt, K. 2006, AJ, 132, 447CrossRefGoogle Scholar
Perera, B. B.P.et al. 2017, MNRAS, 471, 1258CrossRefGoogle Scholar
Portegies Zwart, S. F.et al. 2004, Nature, 428, 724CrossRefGoogle Scholar
Saracino, S.et al. 2016, ApJ, 832, 48CrossRefGoogle Scholar
Seth, A. C.et al. 2014, ApJ, 539, L13Google Scholar
Sollima, S. & Baumgardt, H. 2017, MNRAS, 471, 3668CrossRefGoogle Scholar
Trager, S. C.et al. 1995, AJ, 109, 218CrossRefGoogle Scholar
Tremou, E.et al. 2018, ApJ, 862, 16CrossRefGoogle Scholar
Watkins, L.et al. 2015, ApJ, 802, 29CrossRefGoogle Scholar
Zocchi, A.et al. 2019, MNRAS, 482, 4713CrossRefGoogle Scholar