Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T20:58:07.588Z Has data issue: false hasContentIssue false

On the Origins of Eccentric Close-in Planets

Published online by Cambridge University Press:  01 May 2008

Soko Matsumura
Affiliation:
Department of Physics & Astronomy, Northwestern University, Evanston, IL, 60208 email: [email protected]
Genya Takeda
Affiliation:
Department of Physics & Astronomy, Northwestern University, Evanston, IL, 60208 email: [email protected]
Fred A. Rasio
Affiliation:
Department of Physics & Astronomy, Northwestern University, Evanston, IL, 60208 email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Strong tidal interaction with the central star can circularize the orbits of close-in planets. With the standard tidal quality factor Q of our solar system, estimated circularization timescales for close-in extrasolar planets are typically shorter than the age of the host stars. While most extrasolar planets with orbital radii a ≲ 0.1 AU indeed have circular orbits, some close-in planets with substantial orbital eccentricities have recently been discovered. This new class of eccentric close-in planets implies that either their tidal Q factor is considerably higher, or circularization is prevented by an external perturbation. Here we constrain the tidal Q factor for transiting extrasolar planets by comparing their circularization times with accurately determined stellar ages. Using estimated secular perturbation timescales, we also provide constraints on the properties of hypothetical second planets exterior to the known eccentric close-in planets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Adams, F. C. & Laughlin, G. 2006, ApJ, 649, 992CrossRefGoogle Scholar
Banfield, D. & Murray, N. 1992, Icarus, 99, 390CrossRefGoogle Scholar
Barnes, S. A. 2001, ApJ, 561, 1095CrossRefGoogle Scholar
Brouwer, D. & Clemence, G. M. 1961, Methods of celestial mechanics (New York: Academic Press, 1961)Google Scholar
Butler, R. P., Vogt, S. S., Marcy, G. W., Fischer, D. A., Wright, J. T., Henry, G. W., Laughlin, G., & Lissauer, J. J. 2004, ApJ, 617, 580CrossRefGoogle Scholar
Carone, L. & Pätzold, M. 2007, P&SS, 55, 643Google Scholar
Chatterjee, S., Ford, E. B., & Rasio, F. A. 2007, ArXiv Astrophysics e-printsGoogle Scholar
Dobbs-Dixon, I., Lin, D. N. C., & Mardling, R. A. 2004, ApJ, 610, 464CrossRefGoogle Scholar
Eggleton, P. P., Kiseleva, L. G., & Hut, P. 1998, ApJ, 499, 853CrossRefGoogle Scholar
Faber, J. A., Rasio, F. A., & Willems, B. 2005, Icarus, 175, 248CrossRefGoogle Scholar
Fabrycky, D. & Tremaine, S. 2007, ApJ, 669, 1298CrossRefGoogle Scholar
Ford, E. B., Kozinsky, B., & Rasio, F. A. 2000, ApJ, 535, 385CrossRefGoogle Scholar
Ford, E. B. & Rasio, F. A. 2006, ApJL, 638, L45CrossRefGoogle Scholar
Goldreich, P. & Soter, S. 1966, Icarus, 5, 375CrossRefGoogle Scholar
Hebrard, G., Bouchy, F., Pont, F., Loeillet, B., Rabus, M., Bonfils, X., Moutou, C., Boisse, I., Delfosse, X., Desort, M., Eggenberger, A., Ehrenreich, D., Forveille, T., Lagrange, A. M., Lovis, C., Mayor, M., Pepe, F., Perrier, C., Queloz, D., Santos, N. C., Segransan, D., Udry, S., & Vidal-Madjar, A. 2008, A&A 488, 763Google Scholar
Holman, M., Touma, J., & Tremaine, S. 1997, Nature, 386, 254CrossRefGoogle Scholar
Hut, P. 1981, A&A, 99, 126Google Scholar
Kiseleva, L. G., Eggleton, P. P., & Mikkola, S. 1998, MNRAS, 300, 292CrossRefGoogle Scholar
Kozai, Y. 1962, AJ, 67, 591CrossRefGoogle Scholar
Maness, H. L., Marcy, G. W., Ford, E. B., Hauschildt, P. H., Shreve, A. T., Basri, G. B., Butler, R. P., & Vogt, S. S. 2007, PASP, 119, 90CrossRefGoogle Scholar
Marcy, G. W., Butler, R. P., Williams, E., Bildsten, L., Graham, J. R., Ghez, A. M., & Jernigan, J. G. 1997, ApJ, 481, 926CrossRefGoogle Scholar
Mardling, R. A. & Lin, D. N. C. 2002, ApJ, 573, 829CrossRefGoogle Scholar
Matsumura, S., Takeda, G., & Rasio, F. A. 2008, submittedGoogle Scholar
Murray, C. D. & Dermott, S. F. 1999, Solar system dynamics (Solar system dynamics by Murray C. D., 1999)CrossRefGoogle Scholar
Nagasawa, M., Ida, S., & Bessho, T. 2008, ArXiv e-prints, 801Google Scholar
Narita, N., Sato, B., Ohshima, O., & Winn, J. N. 2007, ArXiv e-prints, 712Google Scholar
Ogilvie, G. I. & Lin, D. N. C. 2004, ApJ, 610, 477CrossRefGoogle Scholar
Queloz, D., Eggenberger, A., Mayor, M., Perrier, C., Beuzit, J. L., Naef, D., Sivan, J. P., & Udry, S. 2000, A&A, 359, L13Google Scholar
Rasio, F. A., Tout, C. A., Lubow, S. H., & Livio, M. 1996, ApJ, 470, 1187CrossRefGoogle Scholar
Sterne, T. E. 1939, MNRAS, 99, 451CrossRefGoogle Scholar
Takeda, G., Ford, E. B., Sills, A., Rasio, F. A., Fischer, D. A., & Valenti, J. A. 2007, ApJS, 168, 297CrossRefGoogle Scholar
Terquem, C., Papaloizou, J. C. B., Nelson, R. P., & Lin, D. N. C. 1998, ApJ, 502, 788CrossRefGoogle Scholar
Winn, J. N., Noyes, R. W., Holman, M. J., Charbonneau, D., Ohta, Y., Taruya, A., Suto, Y., Narita, N., Turner, E. L., Johnson, J. A., Marcy, G. W., Butler, R. P., & Vogt, S. S. 2005, ApJ, 631, 1215CrossRefGoogle Scholar
Wu, Y. 2005, ApJ, 635, 688CrossRefGoogle Scholar
Yoder, C. F. & Peale, S. J. 1981, Icarus, 47, 1CrossRefGoogle Scholar
Zhang, K. & Hamilton, D. P. 2007, submitted to IcarusGoogle Scholar
Zhou, J.-L. & Sun, Y.-S. 2003, ApJ, 598, 1290CrossRefGoogle Scholar