Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-12-02T19:40:30.953Z Has data issue: false hasContentIssue false

On the origin of O2 and other volatile species in comets

Published online by Cambridge University Press:  04 September 2018

Vianney Taquet
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA, Leiden, The Netherlands INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy
Kenji Furuya
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA, Leiden, The Netherlands Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennoudai, 305-8577, Tsukuba, Japan
Catherine Walsh
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA, Leiden, The Netherlands School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
Ewine F. van Dishoeck
Affiliation:
Leiden Observatory, Leiden University, PO Box 9513, 2300 RA, Leiden, The Netherlands Max-Planck-Institut fur Extraterrestrische Physik, Giessenbachstrasse, 85741, Garching, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Molecular oxygen, O2, was recently detected in comet 67P by the ROSINA instrument on board the Rosetta spacecraft with a surprisingly high abundance of 4% relative to H2O, making O2 the fourth most abundant in comet 67P. Other volatile species with similar volatility, such as molecular nitrogen N2, were also detected by Rosetta, but with much lower abundances and much weaker correlations with water. Here, we investigate the chemical and physical origin of O2 and other volatile species using the new constraints provided by Rosetta. We follow the chemical evolution during star formation with state-of-the-art astrochemical models applied to dynamical physical models by considering three origins: i) in dark clouds, ii) during forming protostellar disks, and iii) during luminosity outbursts in disks. The models presented here favour a dark cloud (or “primordial”) grain surface chemistry origin for volatile species in comets, albeit for dark clouds which are slightly warmer and denser than those usually considered as solar system progenitors.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2018 

References

Adams, F. C., 2010, ARAA, 48, 47Google Scholar
Altwegg, K., Balsiger, H., Bar-Nun, A. et al., 2015, Science, 347, 27Google Scholar
Balsiger, H., Altwegg, K., Boschler, P., et al. 2007, Sp. Sc. Rev., 128, 745Google Scholar
Bergman, P., Parise, B., Liseau, R., et al. 2011a, A&A, 527, A39Google Scholar
Bergman, P., Parise, B., Liseau, R., et al. 2011b, A&A, 531, L8Google Scholar
Bisschop, S. E., Fraser, H. J., Öberg, K. I. et al., 2006, A&A, 449, 1297Google Scholar
Cleeves, L. I., Bergin, E. A., Alexander, C. M. O. et al., 2014, Science, 345, 1590Google Scholar
Drozdovskaya, M. N., Walsh, C., Visser, R. et al., 2014, MNRAS, 445, 913Google Scholar
Fayolle, E. C., Balfe, J., Loomis, R. et al., 2016, ApJ, 816, L28Google Scholar
Furuya, K., Aikawa, Y, Hincelin, U. et al., 2015, A&A, 584, A124Google Scholar
Furuya, K., Drozdovskaya, M., Visser, R. et al. 2016, submitted to A&AGoogle Scholar
Garrod, R. T. & Herbst, E., 2006, A&A, 457, 927Google Scholar
Goldsmith, P. F., Liseau, R., Bell, T. A., et al. 2011, ApJ, 737, 96Google Scholar
Harada, N., Herbst, R., & Wakelam, V., 2010, ApJ, 721, 1570Google Scholar
Harsono, D., Visser, R., Bruderer, S. et al., 2013, A&A, 555, A45Google Scholar
Hasegawa, T. I. and Herbst, E., 1993, MNRAS, 263, 589606Google Scholar
Ioppolo, S., Cuppen, H. M., Romanzin, C. et al., 2008, ApJ, 686, 1474Google Scholar
Hartmann, L. & Kenyon, S. J., 1985, ApJ, 299, 462Google Scholar
Lamberts, T., Cuppen, H. M., & Ioppolo, S. and Linnartz, H., 2013, PCCP, 15, 8287Google Scholar
Larsson, B., Liseau, L., Pagani, L., et al. 2007, A&A, 466, 999Google Scholar
Liseau, R., Goldsmith, P. F., Larsson, B., et al. 2012, A&A, 541, A73Google Scholar
Minissale, M., Dulieu, F., Cazaux, S., & Hocuk, S., 2016, A&A, 585, A24Google Scholar
Mousis, O., Ronnet, T., Brugger, B. et al. 2016, accepted in ApJLGoogle Scholar
Miyauchi, N., Hidaka, H., Chigai, T. et al., 2008, Chem. Phys. Lett., 456, 27Google Scholar
Öberg, K. I., Boogert, A. C. A., Pontopiddan, K. M., et al. 2011, ApJ, 740, 109Google Scholar
Parise, B., Bergman, P., & Du, F., 2012, A&A, 541, L11Google Scholar
Rubin, M., Altwegg, K., Balsiger, H., et al. 2015a, Science, 348, 232Google Scholar
Rubin, M., Altwegg, K., van Dishoeck, E. F., & Schwehm, G., 2015b, ApJL, 815, L11Google Scholar
Taquet, V., Ceccarelli, C., & Kahane, C., 2012, A&A, 538, A42Google Scholar
Taquet, V., Charnley, S. B., & Sipilä, O., 2014, ApJ, 791, 1Google Scholar
Teolis, B. D., Loeffler, M. J., Raut, U., & Famá, M. and Baragiola, R. A., 2005, ApJl, 644, L141Google Scholar
Tielens, A. G. G. M., & Hagen, W., A&A, 114, 245Google Scholar
Vasyunin, A. I. and Herbst, E., 2013, ApJ, 762, 86Google Scholar
Visser, R., van Dishoeck, E. F., Doty, S. D., & Dullemond, C. P., 2009, A&A, 495, 881Google Scholar
Vorobyov, E. I. & Basu, S., 2015, ApJ, 805, 115Google Scholar
Wakelam, V. & Herbst, E. 2008 ApJ, 680, 371-383Google Scholar
Walsh, C., Millar, T. J., Nomura, H., et al. 2014, A&A, 563, 33Google Scholar
Yildiz, U. A., Acharyya, K., Goldsmith, P. F., et al. 2013, A&A, 558, A58Google Scholar