Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T09:21:18.031Z Has data issue: false hasContentIssue false

On the Origin of Hyperfast Neutron Stars

Published online by Cambridge University Press:  01 September 2007

V.V. Gvaramadze
Affiliation:
Sternberg Astronomical Institute, Moscow State University, Universitetskij Pr. 13, Moscow 119992, Russia email: [email protected]
A. Gualandris
Affiliation:
Center for Computational Relativity and Gravitation, Rochester Institute of Technology, 78 Lomb Memorial Drive, Rochester, NY14623, USA email: [email protected] Astronomical Institute ‘Anton Pannekoek’ and Section Computational Science, Amsterdam University, Kruislaan 403, 1098 SJ, Amsterdam, the Netherlands email: [email protected]
S. Portegies Zwart
Affiliation:
Astronomical Institute ‘Anton Pannekoek’ and Section Computational Science, Amsterdam University, Kruislaan 403, 1098 SJ, Amsterdam, the Netherlands email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We propose an explanation for the origin of hyperfast neutron stars (e.g. PSR B1508+55, PSR B2224+65, RX J0822–4300) based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star (or its helium core) which attained its peculiar velocity (similar to that of the neutron star) in the course of a strong three- or four-body dynamical encounter in the core of a young massive star cluster. This hypothesis implies that the dense cores of star clusters (located either in the Galactic disk or near the Galactic centre) could also produce the so-called hypervelocity stars – ordinary stars moving with a speed of ~ 1 000 km s−1.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Brown, W. R., Geller, M. J., Kenyon, S. J., & Kurtz, M. J. 2005, ApJ 622, L33CrossRefGoogle Scholar
Brown, W. R., Geller, M. J., Kenyon, S. J., Kurtz, M. J., & Bromley, B. C. 2007, ApJ 660, 311CrossRefGoogle Scholar
Chatterjee, S., & Cordes, J. M. 2004, ApJ 600, L51CrossRefGoogle Scholar
Chatterjee, S., et al. 2005, ApJ 630, L61CrossRefGoogle Scholar
Edelmann, H., Napiwotzki, R., Heber, U., Christlieb, N., & Reimers, D. 2005, ApJ 634, L181CrossRefGoogle Scholar
Gualandris, A., & Portegies Zwart, S. 2007, MNRAS 376, L29CrossRefGoogle Scholar
Gualandris, A., Portegies Zwart, S., & Sipior, M. S. 2005, MNRAS 363, 223CrossRefGoogle Scholar
Gürkan, M. A., Fregeau, J. M., & Rasio, F. A. 2006, ApJ 640, L39CrossRefGoogle Scholar
Gvaramadze, V. V. 2007, A&A 470, L9Google Scholar
Gvaramadze, V. V., Gualandris, A., & Portegies Zwart, S. 2007, preprint: astro-ph/0702735Google Scholar
Heggie, D. C. 1975, MNRAS 173, 729CrossRefGoogle Scholar
Hills, J. G. 1988, Nat 331, 687CrossRefGoogle Scholar
Hui, C. Y., & Becker, W. 2006, A&A 457, L33Google Scholar
Leonard, P. J. T. 1991, AJ 101, 562CrossRefGoogle Scholar
Portegies Zwart, S. F., & McMillan, S. L. W. 2002 ApJ 576, 899CrossRefGoogle Scholar
Ramspeck, M., Heber, U., & Moehler, S. 2001, A&A 378, 907Google Scholar
Yu, Q., & Tremaine, S. 2003, ApJ 599, 1129CrossRefGoogle Scholar