Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T02:00:56.752Z Has data issue: false hasContentIssue false

On the necessity of a new interpretation of the stellar light curves

Published online by Cambridge University Press:  18 February 2014

J. Pascual-Granado
Affiliation:
Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n 18008, Granada, Spain. email: [email protected]
R. Garrido
Affiliation:
Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n 18008, Granada, Spain. email: [email protected]
J. C. Suárez
Affiliation:
Instituto de Astrofísica de Andalucía (CSIC), Glorieta de la Astronomía s/n 18008, Granada, Spain. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The power of asteroseismology relies on the ability to infer the stellar structure from the unambiguous frequency identification of the corresponding pulsation mode. Hence, the use of a Fourier transform is in the basis of asteroseismic studies. Nevertheless, the difficulties with the interpretation of the frequencies found in many stars lead us to reconsider whether Fourier analysis is the most appropriate technique to identify pulsation modes. We have found that the data, usually analyzed using Fourier techniques, present a non-analyticity originating from the lack of connectivity of the underlying function describing the physical phenomena. Therefore, the conditions for the Fourier series to converge are not fulfilled. In the light of these results, we examine in this talk some stellar light curves from different asteroseismology space missions (CoRoT, Kepler and SoHO) in which the interpretation of the data in terms of Fourier frequencies becomes difficult. We emphasize the necessity of a new interpretation of the stellar light curves in order to identify the correct frequencies of the pulsation modes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Auvergne, M., Bodin, P., Boisnard, L., et al. 2009, A&A, 506, 411Google Scholar
Balona, L. A., Breger, M., Catanzaro, G., et al. 2012, MNRAS, 424, 1187CrossRefGoogle Scholar
Balona, L. A., Catanzaro, G., Crause, L., et al. 2013, MNRAS, 432, 2808Google Scholar
Box, G. E. P.. & Jenkins, G. M. 1976, Time Series Analysis, Forecasting and Control (Holden-Day Series in Time Series Analysis)Google Scholar
Chapellier, E., Rodríguez, E., Auvergne, M., et al. 2011, A&A, 525, A23Google Scholar
de Boor, C. 1978, A Practical Guide to Splines, (1st ed., Series: Applied Mathematical Sciences, 27, New York Berlin Heidelberg: Springer)Google Scholar
Gilliland, R. L., Brown, T. M., Christensen-Dalsgaard, J., et al. 2010, PASP, 122, 131Google Scholar
García, R. A., Turck-Chièze, S., Boumier, P., et al. 2005, A&A, 442, 385Google Scholar
García Hernández, A., Moya, A., Michel, E., et al. 2009, A&A, 506, 79Google Scholar
Kaplan, W. 1992, Advanced Calculus (4th ed.Reading, MA: Addison-Wesley)Google Scholar
Kjeldsen, H., Bedding, T. R., & Christensen-Dalsgaard, J. 2008, ApJ, 683, L175Google Scholar
Mantegazza, L., Poretti, E., Michel, E., et al. 2012, A&A, 542, A24Google Scholar
Poretti, E., Michel, E., Garrido, , et al. 2009, A&A, 506, 85Google Scholar
Royden, H. L. 1988, Real Analysis (Prentice-Hall)Google Scholar
Scargle, J. D. 1982, ApJ, 263, 835Google Scholar
van Dijk, G. 2009, Introduction to harmonic analysis and generalized Gelfand pairs (Berlin, New York: Walter De Gruyter)Google Scholar
Wiener, N. 1923, J. Math. and Phys. 2 131174CrossRefGoogle Scholar