Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T21:03:07.211Z Has data issue: false hasContentIssue false

On the multifractality of plasma turbulence in the solar wind

Published online by Cambridge University Press:  24 September 2020

Sebastián Echeverría
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3452, Ñuñoa, Santiago, Chile emails: [email protected], [email protected], [email protected]
Pablo S. Moya
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3452, Ñuñoa, Santiago, Chile emails: [email protected], [email protected], [email protected]
Denisse Pastén
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3452, Ñuñoa, Santiago, Chile emails: [email protected], [email protected], [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this work we have analyzed turbulent plasma in the kinetic scale by the characterization of magnetic fluctuations time series. Considering numerical Particle-In-Cell (PIC) simulations we apply a method known as MultiFractal Detrended Fluctuation Analysis (MFDFA) to study the fluctuations of solar-wind-like plasmas in thermodynamic equilibrium (represented by Maxwellian velocity distribution functions), and out of equilibrium plasma represented by Tsallis velocity distribution functions, characterized by the kappa (κ) parameter, to stablish relations between the fractality of magnetic fluctuation and the kappa parameter.

Type
Contributed Papers
Copyright
© International Astronomical Union 2020

References

Bale, S. D., Kasper, J. C., Howes, G. G., Quataert, E., Salem, C., & Sundkvist, D. 2009, Phys. Rev. 103, 211101CrossRefGoogle Scholar
Grech, D. 2016, Chaos, Solitons & Fractals 88, 183CrossRefGoogle Scholar
Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E., Havlin, S., Bunde, A. & Stanley, H. 2002, Physica A: Statistical Mechanics and its Applications, 315, 87CrossRefGoogle Scholar
Kasper, J., Lazarus, A. & Gary, P. 2002, Geophys. Res. 29, 1839CrossRefGoogle Scholar
Pastén, D., Czechowski, Z., & Toledo, B. 2018, Chaos, 28, 083128CrossRefGoogle Scholar
Peng, C.-K., Havlin, S., Stanley, H., & Goldberger, A. L. 1995, Chaos, 5, 82CrossRefGoogle Scholar
Peng, C.-K., Buldyrev, S. V., Havlin, S., Simons, M., Stanley, H., & Goldberger, A. L. 1994, Phys. Rev, 49, 1685CrossRefGoogle Scholar
Telesca, L., Czechowski, Z., & Lovallo, M. 2015, Chaos, 25, 063113CrossRefGoogle Scholar
Viñas, A. F., Moya, P. S., Navarro, R., & Araneda, J. 2014, Phys. Plasmas, 21, 012902CrossRefGoogle Scholar