Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-18T18:04:14.766Z Has data issue: false hasContentIssue false

On the influence of magnetic fields in neutral planetary wakes

Published online by Cambridge University Press:  12 September 2017

C. Villarreal D’Angelo
Affiliation:
Instituto de Astronomía Teórica y Experimental, Conicet-UNC, Laprida 854, X5000BGR, Córdoba, Argentina email: [email protected]
M. Schneiter
Affiliation:
Instituto de Astronomía Teórica y Experimental, Conicet-UNC, Laprida 854, X5000BGR, Córdoba, Argentina email: [email protected]
A. Esquivel
Affiliation:
Instituto de Ciencias Nucleares, UNAM, C. Univ., AP 70-543 México D.F., México
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a 3D magnetohydrodynamic study of the effect that stellar and planetary magnetic fields have on the calculated Lyα absorption during the planetary transit, employing parameters that resemble the exoplanet HD209458b. We assume a dipolar magnetic field for both the star and the planet, and use the Parker solution to initialize the stellar wind. We also consider the radiative processes and the radiation pressure.

We use the numerical MHD code Guacho to run several models varying the values of the planetary and stellar magnetic moments within the range reported in the literature.

We found that the presence of magnetic fields influences the escaping neutral planetary material spreading the absorption Lyα line for large stellar magnetic fields.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2017 

References

Ben-Jaffel, L. & Sona Hosseini, S., 2010, ApJ, 709, 1284 CrossRefGoogle Scholar
Bourrier, V., Lecavelier des Etangs, A., Dupuy, H., et al., 2013, A&A, 551, A63 Google Scholar
Durand-Manterola, H. J., 2009, Plan. & Space Sci., 57, 1405 Google Scholar
Ehrenreich, D., Bourrier, V., Bonfils, X., et al., 2012, A&A, 547, A18 Google Scholar
Ehrenreich, D., Bourrier, V., Wheatley, P. J., et al., 2015, Nature, 522, 459 Google Scholar
Khodachenko, M. L., Alexeev, I., Belenkaya, E., et al., 2012, ApJ, 744, 70 Google Scholar
Khodachenko, M. L., Shaikhislamov, I. F., Lammer, H., & Prokopov, P. A., 2015, ApJ, 813, 50 CrossRefGoogle Scholar
Kislyakova, K. G., Holmström, M., Lammer, H., Odert, P., & Khodachenko, M. L., 2014, Science, 346, 981 CrossRefGoogle Scholar
Kulow, J. R., France, K., Linsky, J., & Loyd, R. O. P., 2014, ApJ, 786, 132 CrossRefGoogle Scholar
Lecavelier Des Etangs, A., Ehrenreich, D., Vidal-Madjar, A., et al., 2010, A&A, 514, A72 Google Scholar
Murray-Clay, R. A., Chiang, E. I., & Murray, N., 2009, ApJ, 693, 23 CrossRefGoogle Scholar
Owen, J. E. & Adams, F. C., 2014, MNRAS, 444, 3761 Google Scholar
Pneuman, G. W. & Kopp, R. A., 1971, Sol. Phys., 18, 258 CrossRefGoogle Scholar
Sanz-Forcada, J., Micela, G., Ribas, I., et al., 2011, A&A, 532, A6 Google Scholar
Sánchez-Lavega, A., 2004, ApJL, 609, L87 Google Scholar
Schneiter, E. M., Velázquez, P. F., Esquivel, A., Raga, A. C., & Blanco-Cano, X., 2007, ApJ, 671, L57 CrossRefGoogle Scholar
Schneiter, E. M., Esquivel, A., D’Angelo, C. S. V., et al., 2016, MNRAS, 457, 1666 Google Scholar
Tremblin, P. & Chiang, E., 2013, MNRAS, 428, 2565 CrossRefGoogle Scholar
Vidotto, A. A., Opher, M., Jatenco-Pereira, V., & Gombosi, T. I., 2009, ApJ, 699, 441 Google Scholar
Vidotto, A. A., Fares, R., Jardine, M., Moutou, C., & Donati, J.-F., 2015, MNRAS, 449, 4117 Google Scholar
Vidal-Madjar, A., Lecavelier des Etangs, A., Désert, J.-M., et al., 2003, Nature, 422, 143 CrossRefGoogle Scholar
Vidal-Madjar, A., Désert, J.-M., Lecavelier des Etangs, A., et al., 2004, ApJ, 604, L69 Google Scholar
Vidal-Madjar, A., Huitson, C. M., Bourrier, V., et al., 2013, A&A, 560, A54 Google Scholar
Villarreal D’Angelo, C., Schneiter, M., Costa, A., et al., 2014, MNRAS, 438, 1654 CrossRefGoogle Scholar
Yelle, R. V., 2004, Icarus, 170, 167 Google Scholar