Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T21:33:54.483Z Has data issue: false hasContentIssue false

On the hadronic γ-ray emission from Tycho's Supernova Remnant

Published online by Cambridge University Press:  29 January 2014

Xiao Zhang
Affiliation:
Department of Astronomy, Nanjing Univ., Nanjing 210093, China
Yang Chen
Affiliation:
Department of Astronomy, Nanjing Univ., Nanjing 210093, China Key Laboratory of Modern Astronomy and Astrophysics, Nanjing Univ., Ministry of Education, China
Hui Li
Affiliation:
Department of Astronomy, Nanjing Univ., Nanjing 210093, China Department of Astronomy, Univ. of Michigan, 500 Church Street, Ann Arbor, MI 48109, USA
Xin Zhou
Affiliation:
Key Laboratory of Modern Astronomy and Astrophysics, Nanjing Univ., Ministry of Education, China Purple Mountain Observatory, 2 West Beijing Road, Nanjing 210008, China
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Tycho is one of nearly a dozen Galactic supernova remnants which are suggested to emit hadronic γ-ray emission. Among them, however, it is the only one in which the hadronic emission is proposed to arise from the interaction with low-density ambient medium. Based on the multi-band observations, we suggest that Tycho is encountering dense cloud at the northeastern boundary. The γ-ray emissions can be explained by hadronic process with self-consistent parameters, such as a modest energy conversion efficiency. In this SNR-cloud association scenario, the distance can be estimated as ~2.5 kpc.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Acciari, V. A., et al. 2011, ApJ (Letter), 730, L20CrossRefGoogle Scholar
Araya, M. & Cui, W., 2010, ApJ, 720, 20CrossRefGoogle Scholar
Berezhko, E. G. & Völk, H. J., 1997, Astroparticle Physics, 7, 183CrossRefGoogle Scholar
Cai, Z.-Y., Yang, J., & Lu, D.-R., 2009, Chinese Astronomy and Astrophysics, 33, 393CrossRefGoogle Scholar
Giordano, F., et al. 2012, ApJ (Letter), 744, L2Google Scholar
Gomez, H. L., et al. 2012, MNRAS, 420, 3557Google Scholar
Hughes, J. P., 2000, ApJ (Letter), 545, L53CrossRefGoogle Scholar
Ishihara, D., et al. 2010, A&A, 521, L61Google Scholar
Katsuda, S., Petre, R., Hughes, J. P., Hwang, U., Yamaguchi, H., Hayato, A., Mori, K., & Tsunemi, H., 2010, ApJ, 709, 1387Google Scholar
Kothes, R., Fedotov, K., Foster, T. J. & Uyaníker, B., 2006, A&A, 457, 1081Google Scholar
Lee, J.-J., Koo, B.-C., & Tatematsu, K., 2004, ApJ, 605, L113CrossRefGoogle Scholar
Morlino, G. & Caprioli, D., 2012, A&A, 538, A81Google Scholar
Reynoso, E. M., Moffett, D. A., Goss, W. M., Dubner, G. M., Dickel, J. R., Reynolds, S. P., & Giacani, E. B., 1997, ApJ, 491, 816CrossRefGoogle Scholar
Roberts, W. W., 1972, ApJ, 173, 259CrossRefGoogle Scholar
Tamagawa, T., et al. 2009, PASJ, 61, 167Google Scholar
Tang, Y.-Y., Fang, J., & Zhang, L., 2011, Chinese Physics Letters, 28, 109501CrossRefGoogle Scholar
Tian, W. W. & Leahy, D. A., 2011, ApJ (Letter), 729, L15CrossRefGoogle Scholar
Xu, J.-L., Wang, J.-J., & Miller, M., 2011, Research in Astronomy and Astrophysics, 11, 537Google Scholar