Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T12:26:58.713Z Has data issue: false hasContentIssue false

On the dynamics of eruptive prominences

Published online by Cambridge University Press:  06 January 2014

Laura A. Balmaceda
Affiliation:
ICATE/CONICET-UNSJ, CC 49, 5400 San Juan, Argentina email: [email protected] Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil
Hebe Cremades
Affiliation:
UTN - Facultad Regional Mendoza and CONICET, Mendoza, Argentina
Guillermo Stenborg
Affiliation:
George Mason University, Fairfax, VA 22030, USA
Carlos Francile
Affiliation:
OAFA - Universidad Nacional de San Juan, San Juan, Argentina
Leonardo Di Lorenzo
Affiliation:
Universidad Nacional de San Luis, San Luis, Argentina
Fernando López
Affiliation:
ICATE/CONICET-UNSJ, CC 49, 5400 San Juan, Argentina email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

To contribute to the understanding of the physical mechanisms at work during the initial phase and early evolution of erupting prominences, we analyze combined observations from ground-based and space-borne instruments. We present two case studies, which occurred at two different phases of the solar cycle, namely on March 2, 2002 and on April 16, 2012. In particular, we show the results of a morphological and kinematical analysis and interpret them in terms of available theoretical models.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Bagalá, L. G., Bauer, O. H., Fernández Borda, R., et al.Magnetic Fields and Solar Processes, 1999, ESA Special Publication, 448, 469Google Scholar
Brueckner, G. E., Howard, R. A., Koomen, M. J., et al. 1995, Sol. Phys. 162, 357402Google Scholar
Charbonneau, P. 1995, ApJS, 101, 309Google Scholar
Chen, J. 1989, ApJ 338, 453470Google Scholar
Chen, J. 1996, JGR 101 2749927520Google Scholar
Chen, J., Marqué, C., Vourlidas, A., Krall, J., & Schuck, P. W. 2006, ApJ 649 452463Google Scholar
Chen, J. & Kunkel, V. 2010, ApJ 717 11051122CrossRefGoogle Scholar
Delaboudinière, J.-P., Artzner, G. E., Brunaud, J., et al. 1995, Sol. Phys. 162, 291312Google Scholar
Gallagher, P. T., Lawrence, G. R., & Dennis, B. R. 2003, ApJL 588 L53L56Google Scholar
Gopalswamy, N., Shimojo, M., Lu, W., et al. 2003, ApJ 586 562578Google Scholar
Jing, J., Yurchyshyn, V. B., Yang, G., Xu, Y., & Wang, H. 2004, ApJ 614 10541062CrossRefGoogle Scholar
Kaiser, M. L., Kucera, T. A., Davila, J. M., et al. 2008, Sp. Sci. Rev. 136 516Google Scholar
Kliem, B. & Török, T. 2006, Phys. Rev. Let. 96 25, 255002Google Scholar
Low, B. C. 2001, JGR 106 2514125164Google Scholar
Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, Sol. Phys. 275 315Google Scholar
Srivastava, N., Schwenn, R. & Stenborg, G. 1999, 8th SOHO Workshop: Plasma Dynamics and Diagnostics in the Solar Transition Region and Corona, ESA Special Publication, 446, 621Google Scholar
Stenborg, G., Schwenn, R., Srivastava, N., et al. 1999, Sp. Sci. Rev. 87 307310CrossRefGoogle Scholar
Stenborg, G. & Cobelli, P. J. 2003, Astron. Astroph. 398 11851193Google Scholar
Vourlidas, A., Howard, R. A., Esfandiari, E., et al. 2010, ApJ 722 15221538Google Scholar
Webb, D. F. & Hundhausen, A. J. 1987, Sol. Phys. 108 383401Google Scholar