Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-08T18:21:55.119Z Has data issue: false hasContentIssue false

On the Climatic Impact of CO2 Ice Particles in Atmospheres of Terrestrial Exoplanets

Published online by Cambridge University Press:  29 April 2014

D. Kitzmann
Affiliation:
Zentrum für Astronomie und Astrophysik, Technische Universität Berlin
A. B. C. Patzer
Affiliation:
Zentrum für Astronomie und Astrophysik, Technische Universität Berlin
H. Rauer
Affiliation:
Zentrum für Astronomie und Astrophysik, Technische Universität Berlin Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt (DLR)
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Clouds play a significant role for the energy budget in planetary atmospheres. They can scatter incident stellar radiation back to space, effectively cooling the surface of terrestrial planets. On the other hand, they may contribute to the atmospheric greenhouse effect by trapping outgoing thermal radiation. For exoplanets near the outer boundary of the habitable zone, condensation of CO2 can occur due to the low atmospheric temperatures. These CO2 ice clouds may play an important role for the surface temperature and, therefore, for the question of habitability of those planets. However, the optical properties of CO2 ice crystals differ significantly from those of water droplets or water ice particles. Except for a small number of strong absorption bands, they are almost transparent with respect to absorption. Instead, they are highly effective scatterers at long and short wavelengths. Therefore, the climatic effect of a CO2 ice cloud will depend on how much incident stellar radiation is scattered to space in comparison to the amount of thermal radiation scattered back towards the planetary surface. This contribution aims at the potential greenhouse effect of CO2 ice particles. Their scattering and absorption properties are calculated for assumed particle size distributions with different effective radii and particle densities. An accurate radiative transfer model is used to determine the atmospheric radiation field affected by such CO2 particles. These results are compared to less detailed radiative transfer schemes employed in previous studies.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Colaprete, A. & Toon, O. B. 2003, Journal of Geophysical Research (Planets), 108, 5025Google Scholar
Forget, F. & Pierrehumbert, R. T. 1997, Science, 278, 1273CrossRefGoogle Scholar
Hansen, G. B. 1997, J. Geophys. Res., 102, 21569Google Scholar
Hansen, G. B. 2005, Journal of Geophysical Research (Planets), 110, E11003Google Scholar
Kasting, J. F. 1988, Icarus, 74, 472CrossRefGoogle Scholar
Kasting, J. F., Whitmire, D. P., & Reynolds, R. T. 1993, Icarus, 101, 108Google Scholar
Kitzmann, D., Patzer, A. B. C., & Rauer, H. 2012, A&A 557 id.A6Google Scholar
Mischna, M. A., Kasting, J. F., Pavlov, A., & Freedman, R. 2000, Icarus, 145, 546Google Scholar
Pierrehumbert, R. T. & Erlick, C. 1998, Journal of Atmospheric Sciences, 55, 1897Google Scholar
Selsis, F., Kasting, J. F., Levrard, B., et al. 2007, A&A, 476, 1373Google Scholar
Stamnes, K., Tsay, S.-C., Jayaweera, K., & Wiscombe, W. 1988, Appl. Opt, 27, 2502CrossRefGoogle Scholar
Toon, O. B., McKay, C. P., Ackerman, T. P., et al., 1989, J. Geophys. Res., 94, 16287Google Scholar
von Paris, P., Gebauer, S., Godolt, M., et al. 2010, A&A, 522, A23Google Scholar
Wergin, W. P., Foster, J. L., Chang, A. T. C., et al. 1997, Microsc. and Microanalysis, 3, 1235CrossRefGoogle Scholar