Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-13T06:45:49.278Z Has data issue: false hasContentIssue false

On secular resonances of small bodies in the planetary systems

Published online by Cambridge University Press:  01 August 2006

Jianghui Ji
Affiliation:
Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China email: [email protected] National Astronomical Observatory, Chinese Academy of Sciences, Beijing 100012, China email: [email protected]
L. Liu
Affiliation:
Department of Astronomy, Nanjing University, Nanjing 210093, China
G. Y. Li
Affiliation:
Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China email: [email protected] National Astronomical Observatory, Chinese Academy of Sciences, Beijing 100012, China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigate the secular resonances for massless small bodies and Earth-like planets in several planetary systems. We further compare the results with those of Solar System. For example, in the GJ 876 planetary system, we show that the secular resonances ν1 and ν2 (respectively, resulting from the inner and outer giant planets) can excite the eccentricities of the Earth-like planets with orbits 0.21≤ a <0.50 AU and eject them out of the system in a short timescale. However, in a dynamical sense, the potential zones for the existence of Earth-like planets are in the area 0.50≤ a ≤1.00 AU, and there exist all stable orbits last up to 105 yr with low eccentricities. For other systems, e.g., 47 UMa, we also show that the Habitable Zones for Earth-like planets are related to both secular resonances and mean motion resonances in the systems.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Asghari, N. et al. , 2004, A&A 426, 353Google Scholar
Barnes, R. & Quinn, T 2004, ApJ 611, 494CrossRefGoogle Scholar
Beauge, C. & Michtchenko, T.A. 2003, MNRAS 341, 760CrossRefGoogle Scholar
Beichman, C.A. et al. , 2006, AAS DPS Meeting, 38, 54.01Google Scholar
Butler, R.P. & Marcy, G.W. 1996, ApJ 464, L153CrossRefGoogle Scholar
Butler, R.P. et al. , 2004, ApJ 617, 580CrossRefGoogle Scholar
Butler, R.P. et al. , 2006, ApJ 646, 505CrossRefGoogle Scholar
Cuntz, M., vonBloh, W. Bloh, W., Bounama, C. & Franck, S. 2003, Icarus 162, 214CrossRefGoogle Scholar
Dvorak, R., Pilat-Lohinger, E., Schwarz, R. & Freistetter, F. 2004, A&A 426, L37Google Scholar
Érdi, B., Dvorak, R., Sándor, Z., Pilat-Lohinger, E. & Funk, B. 2004, MNRAS 351, 1043CrossRefGoogle Scholar
Fehlberg, E. 1968, NASA TR R-287Google Scholar
Fischer, D. et al. , 2002, ApJ 564, 1028CrossRefGoogle Scholar
Fischer, D. et al. , 2003, ApJ 586, 1394CrossRefGoogle Scholar
Froeschlé, Ch. 1997, Celest. Mech. & Dyn. Astron. 65, 165CrossRefGoogle Scholar
Gozdziewski, K. 2002, A&A 393, 997Google Scholar
Gozdziewski, K. 2003, A&A 398, 1151Google Scholar
Hadjidemetriou, J.D. 2002, Celest. Mech. & Dyn. Astron. 83, 141CrossRefGoogle Scholar
Hadjidemetriou, J.D. 2006, Celest. Mech. & Dyn. Astron. 95, 225CrossRefGoogle Scholar
Ji, J., Li, G. & Liu, L. 2002, ApJ 572, 1041CrossRefGoogle Scholar
Ji, J., Liu, L.Kinoshita, H., Zhou, J.L., Nakai, H. & Li, G.Y. 2003, ApJ 591, L57CrossRefGoogle Scholar
Ji, J., Liu, L., Kinoshita, H. & Li, G.Y. 2005, ApJ 631, 1191CrossRefGoogle Scholar
Ji, J., Kinoshita, H., Liu, L. & Li, G.Y. 2006, ApJ accepted, [astroph/0611008]Google Scholar
Jones, B.W., Sleep, P.N. & Chambers, J.E. 2001, A&A 366, 254Google Scholar
Kasting, J.F., Whitmire, D.P. & Reynolds, R.T. 1993, Icarus 101, 108CrossRefGoogle Scholar
Kley, W., Lee, M.H., Murray, N. & Peale, S.J. 2005, A&A 437, 727Google Scholar
Laughlin, G. & Chambers, J.E. 2001, ApJ 551, L109CrossRefGoogle Scholar
Laughlin, G., Chambers, J.E. & Fischer, D. 2002, ApJ 579, 455CrossRefGoogle Scholar
Laughlin, G., Butler, R.P., Fischer, D.A., Marcy, G.W., Vogt, S.S. & Wolf, A.S. 2005, ApJ 622, 1182CrossRefGoogle Scholar
Lee, M.H. & Peale, S.J. 2002, ApJ 567, 596CrossRefGoogle Scholar
Lee, M.H. & Peale, S.J. 2003, ApJ 592, 1201CrossRefGoogle Scholar
Lissauer, J.J. 1993, ARAA 31, 129CrossRefGoogle Scholar
Malhotra, R. 2004, AAS DPS Meeting 36, 42.04Google Scholar
Marcy, G.W. et al. , 2001, ApJ 556, 296CrossRefGoogle Scholar
Mayor, M. & Queloz, D 1995, Nature 378, 355CrossRefGoogle Scholar
McArthur, B.E. et al. , 2004, ApJ 614, L81CrossRefGoogle Scholar
Milani, A. & Knezević, Z. 1992, Icarus 98, 211CrossRefGoogle Scholar
Moons, M. & Morbidelli, A 1995, Icarus 114, 33CrossRefGoogle Scholar
Morbidelli, A. & Moons, M. 1993, Icarus 102, 316CrossRefGoogle Scholar
Morbidelli, A. et al. , 2002, in: Bottke, W.F. Jr., Cellino, A., Paolicchi, P. & Binzel, R.P. (eds.) Asteroids III (Tucson: Univ. of Arizona Press), p. 409CrossRefGoogle Scholar
Murray, C.D. & Dermott, S.F. 1999, Solar System Dynamics (New York: Cambridge Univ. Press)Google Scholar
Nagasawa, M., Lin, D.N.C. & Thommes, E 2005, ApJ 635, 578CrossRefGoogle Scholar
Rivera, E.J. et al. , 2005, ApJ 634, 625CrossRefGoogle Scholar
Santos, N.C. et al. , 2004, A&A 426, L19Google Scholar
Williams, J.G. 1969, Ph.D. Thesis, Univ. of Califonia, Los AngelesGoogle Scholar
Wisdom, J. 1983, Icarus 56, 51CrossRefGoogle Scholar
Wisdom, J. & Holman, M 1991, AJ 102, 1528CrossRefGoogle Scholar