Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T11:19:03.175Z Has data issue: false hasContentIssue false

Observations of radio spectra at 1–2.5 GHz associated with CME start time

Published online by Cambridge University Press:  01 September 2008

José R. Cecatto*
Affiliation:
Astrophysics Division, INPE, P.O. Box 51512227-010, São José dos Campos, Brasil email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We know Coronal Mass Ejections (CME) and flares are the most energetic phenomena happening on the Sun. Until now the information about origin and trigger mechanism of CMEs remains scarce. Also, there is unconclusive information about the association between them and flares although progress has been made in recent years. Multi-spectral observations suggested that the flare energy release occurs in regions from where the decimetric radio emission originates. In this case, investigations of the solar emission in this wavelength range can give us valuable information about these questions. During last solar maximum the Brazilian Solar Spectroscope (BSS) observed the solar radio spectrum (1–2.5 GHz) with high time (100–20 ms) and frequency (50–100 channels) resolutions on a daily (11–19 UT) basis. A survey during the period 1999–2002, shows that a significant fraction (20% –57 events) of CMEs recorded by LASCO has an association with the spectra of radio bursts recorded by BSS. Analysis of the radio spectrum associated to CME shows there is a dominance of continuum and/or pulsation and that the association becomes stronger when we consider the CME acceleration since its origin on the Sun. A statistics of this association between CME dynamics and the characteristics of decimetric radio bursts recorded by BSS is presented. Emphasis is given to observations of the association with CME start time.

Keywords

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2009

References

Brueckner, G. E., Howard, R. A., Koomen, M. J., Korendyke, C. M., Michels, , et al. 1995, Solar Phys., 162, 357CrossRefGoogle Scholar
Fernandes, F. C. R. 1997, in: INPE-6396-TDI/612, Tese de Doutorado (São José dos Campos), p. 178Google Scholar
Gosling, J. T., Hildner, E., MacQueen, R. M., Munro, R. H., Poland, A. I., & Ross, C. L. 1974, JGR, 79, 4581CrossRefGoogle Scholar
Hudson, H. S., Kosugi, T., Nitta, N. V., & Shimojo, M. 2001, ApJ, 561, L211CrossRefGoogle Scholar
Jun Fu, Q., Yan, Y. H., Liu, Y. Y., Wang, M., & Wang, S. J. 2004, Chin. J. Astron.Astrophys., 4 (2), 176Google Scholar
Kahler, S. W. 1994, ApJ, 428, 837CrossRefGoogle Scholar
Munro, R. H., Gosling, J. T., Hildner, E., MacQueen, R. M., Poland, A. I., & Ross, C. L. 1979, Solar Phys., 61, 201CrossRefGoogle Scholar
Pohjolainen, S. 2008, A&A, 483, 297Google Scholar
Sawant, H. S., Subramanian, K. R., Faria, C., Fernandes, F. C. R., Sobral, J. H.A., & Cecatto, J. R., et al. 2001, Solar Phys., 200, 167CrossRefGoogle Scholar
Sheeley, N. R. Jr., Howard, R. A., Koomen, M. J., & Michels, D. J. 1983, ApJ, 272, 349CrossRefGoogle Scholar
St.Cyr, O. C. & Webb, D. F. 1991, Solar Phys., 136, 379CrossRefGoogle Scholar
Svestka, Z. 1995, Private communicationGoogle Scholar
Tousey, R. 1973, in: Rycroft, M. J. & Kuncorn, S. K. (eds.) The solar corona-Space Research XIII (Berlin: Akademie-Verlag), p. 713Google Scholar
Verneta, A. I. 1997, Solar Phys., 170, 357CrossRefGoogle Scholar
Verneta, A. I. & Hundhausen, A. J. 1997, Solar Phys., 108, 383Google Scholar
Wang, S. J., Yan, Y., Fu, Q., Liu, Y., & Chen, Z. 2005, in: Dere, K. P., Wang, J., & Yan, Y. (eds.) Coronal and Stellar Mass Ejections (Beijing), p. 139Google Scholar