Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T00:38:18.189Z Has data issue: false hasContentIssue false

Observational aspects of AGN jets at high energy

Published online by Cambridge University Press:  24 March 2015

Jun Kataoka*
Affiliation:
Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

For the last two decades, significant and dramatic progress has been made in understanding astrophysical jet sources, particularly in the X-ray and gamma-ray energy bands. For example, the Chandra X-ray observatory reveals a number of AGN jets extending from kpc to Mpc scales. More recently, the Fermi Gamma-ray Space Telescopes launched in 2008 started monitoring the gamma-ray sky with excellent sensitivity of about ten times greater than that of EGRET onboard CGRO, and has detected more than 2,000 sources (mostly AGNs) as of 2014. Moreover, Fermi-LAT has discovered gamma-ray emissions not only from blazars but from a dozen radio galaxies not previously known to emit gamma-rays. Closer to home, the Fermi-bubbles were discovered to extend 50 degrees above and below the Galactic center. These large scale diffuse gamma-ray structures are similar in structure to AGN lobes such as those seen in Cen A and provide evidence for past activity in our Galactic center. In this review, I will first summarize recent highlights of large scale jets in radio galaxies, specifically resolved by the Chandra X-ray observatory. Next I will move on to the gamma-ray sky to present some highlights from Fermi-LAT observations of “misaligned” blazars, namely radio galaxies. I will discuss a unification scheme connecting blazars and misaligned radio galaxies. In the last part, I will also briefly comment on recent multiband observations of the Fermi-bubble and possible impacts on the AGN jet physics in the near future.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2015 

References

Abdo, A., et al. 2009a, ApJ, 699, 31Google Scholar
Abdo, A., et al. 2009b, ApJ, 700, 597CrossRefGoogle Scholar
Abdo, A., et al. 2009c, ApJS, 183, 46Google Scholar
Abdo, A., et al. 2009d, ApJ, 707, 55Google Scholar
Abdo, A., et al. 2010a, ApJ, 715, 429Google Scholar
Abdo, A., et al. 2010b, Science, 328, 725Google Scholar
Abramowicz, M. A., Chen, X., Kato, S., Lasota, J.-P., & Regev, O. 1995, ApJ, 438, L37Google Scholar
Acciari, V. A., et al. 2008, ApJ, 679, 397Google Scholar
Ackermann, M.et al. 2011, ApJ, 743, 171Google Scholar
Ackermann, M., et al. 2012, ApJ, 747, 104Google Scholar
Ackermann, M.et al. 2014, ApJ, 793, 64Google Scholar
Aharonian, F., et al. 2009, ApJ, 695, L40Google Scholar
Aleksic, J., et al. 2010, ApJ, 723, L207Google Scholar
Aleksic, J., et al. 2012, A&A, 539, L2Google Scholar
Aleksic, J., et al. 2014, A&A, 564, 5Google Scholar
Antonucci, R. 1993, ARA&A, 31, 473Google Scholar
Asada, K., et al. 2006, PASJ, 58, 261Google Scholar
Barthel, P. D. 1989, ApJ, 336, 606Google Scholar
Begelman, M. C., Blandford, R. D., & Rees, M. J. 1984, Rev. Mod. Phys., 56, 255Google Scholar
Bicknell, G. V. 1984, ApJ, 286, 68Google Scholar
Bicknell, G. V. 1994, ApJ, 422, 542Google Scholar
Blandford, R. D. & Znajek, R. L. 1977, MNRAS, 179, 433Google Scholar
Blandford, R. D. 1990, in Active Galactic Nuclei, ed. Courvoisier, T. J.-L. & Mayor, M. (Berlin: Springer), 161Google Scholar
Bridle, A. H. & Perley, R. A. 1984, ARA&A, 22, 319Google Scholar
Brunetti, M., et al. 2004, ApJ, 612, 729Google Scholar
Celotti, A., et al. 2001, MNRAS, 321, L1Google Scholar
Chartas, G., et al. 2000, ApJ, 542, 655Google Scholar
Croston, J. H., et al. 2005, ApJ, 626, 733Google Scholar
Croston, J. H., et al. 2008, MNRAS, 386, 1709Google Scholar
Croston, J. H. & Hardcastle, M. J. 2014, MNRAS, 438, 3310Google Scholar
De Young, D. S. 1986, ApJ, 307, 62Google Scholar
Dobler, G., et al. 2010, ApJ, 717, 825Google Scholar
Dutson, K. L., et al. 2014, MNRAS, 442, 2048Google Scholar
Eracleous, M., Sambruna, R., & Mushotzky, R. F. 2000, ApJ, 537, 654Google Scholar
Fabian, A. C. & Rees, M. J. 1995, MNRAS, 277, L55Google Scholar
Garofalo, D. 2009, ApJ, 699, 400Google Scholar
Ghisellini, G., Tavecchio, F., & Chiaberge, M., 2005, A&A, 432, 401Google Scholar
Ghisellini, G., Maraschi, L., & Tavecchio, F. 2009, MNRAS, 396, L105Google Scholar
Grandi, P., Urry, C. M., & Maraschi, L. 2002, New Astron. Revs, 46, 221Google Scholar
Grandi, P., Malaguti, G. & Fiocchi, M., 2006, ApJ, 642, 113Google Scholar
Grandi, P., & Palumbo, G. G., 2007, ApJ, 659, 235Google Scholar
Grandi, P., et al. 2013, EPJ Wev of Conference, 61, 04007Google Scholar
Hardcastle, M. J.et al. 2003, ApJ, 593, 169Google Scholar
Hardcastle, M. J., Harris, D. E., Worrall, D. M., & Birkinshaw, M. 2004, ApJ, 612, 729Google Scholar
Harris, D. E. & Krawczynski, H. 2002, ApJ, 565, 244Google Scholar
Harris, D. E., et al. 2003, ApJ, 586, L41Google Scholar
Harris, D. E. & Krawczynski, H. 2006, ARA&A, 44, 463Google Scholar
Kataoka, J., et al. 2003, A&A, 399, 91Google Scholar
Kataoka, J. & Stawarz, Ł. 2005, ApJ, 622, 797Google Scholar
Kataoka, J., et al. 2006, ApJ, 641, 158CrossRefGoogle Scholar
Kataoka, J., et al. 2007, PASJ, 59, 279Google Scholar
Kataoka, J., et al. 2008, ApJ, 685, 839Google Scholar
Kataoka, J., et al. 2011, ApJ, 740, 29Google Scholar
Kataoka, J., et al. 2013, ApJ, 779, 57Google Scholar
Koide, S., Shibata, K., Kudoh, T., & Meier, D. L. 2002, Science, 295, 1688Google Scholar
Komossa, S. 2008, RevMexAA Conf. Ser., 32, 86Google Scholar
Kukula, M. J., Pedlar, A., Baum, S. A., & O'Dea, C. P. 1995, MNRAS, 276, 1262Google Scholar
Laing, R. A. & Bridle, A. H., 2004, MNRAS, 348, 1459Google Scholar
Laing, R. A., et al. 2006a, MNRAS, 372, 510Google Scholar
Laing, R. A., et al. 2006b, MNRAS, 368, 48Google Scholar
Lasota, J.-P. 1996, in Int. Workshop on Basic Physics of Accretion Disks, Advection-dominated Galactic Nuclei, ed. Kato, S.et al. (Amsterdam: Gordon and Breach), 85Google Scholar
Maraschi, L., Colpi, M., Ghisellini, G., Perego, A., & Tavecchio, F. 2012, Journal of Physics Conference Series, 355, 012016Google Scholar
Marshall, H. L., et al. 2002, ApJ, 564, 683Google Scholar
Massaro, F., Harris, D. E., & Cheung, C. C. 2011, ApJS, 197, 24Google Scholar
Massaro, F., et al. 2012, ApJS, 203, 31Google Scholar
Middelberg, E., Roy, A. L., Nagar, N. M., et al. 2004, A&A, 417, 925Google Scholar
Narayan, R. & Yi, I. 1994, ApJ, 428, L13Google Scholar
Narayan, R. & Yi, I. 1995, ApJ, 444, 231Google Scholar
Narayan, R., Igumenshchev, I. V., & Abramowicz, M. A., 2003, PASJ, 55, L69Google Scholar
Pogge, R. W. 2000, New Astron. Revs, 44, 381Google Scholar
Sambruna, R. M., et al., 2009, ApJ, 700, 1473CrossRefGoogle Scholar
Shakura, N. I. & Sunyaev, R. A. 1973, A&A, 24, 337Google Scholar
Sikora, M., Stawarz, L., & Lasota, J.-P. 2007, ApJ, 658, 815Google Scholar
Sikora, M., et al., 2013, ApJ, 765, 62Google Scholar
Sofue, Y.et al., 2000, ApJ, 540, 224Google Scholar
Stawarz, L., Ostrowski, M. 2002, ApJ, 578, 763Google Scholar
Stawarz, L., et al. 2004, ApJ, 608, 95Google Scholar
Stawarz, L., et al. 2013, ApJ, 766, 48Google Scholar
Strong, A. W., et al. 1982, A&A, 115, 404Google Scholar
Su, M., Slatyer, T. R., & Finkbeiner, D. P., 2010, ApJ, 724, 1044Google Scholar
Tavecchio, F., et al. 2000, ApJ, 544, L23Google Scholar
Tchekhovskoy, A., Narayan, R., & McKinney, J. C. 2010, ApJ, 711, 50Google Scholar
Thean, A. H. C., et al., 2001, MNRAS, 327, 369Google Scholar
Uchiyama, Y., et al. 2006, ApJ, 648, 910Google Scholar
Ulvestad, J. S. & Wilson, A. S. 1989, ApJ, 343, 659Google Scholar
Urry, C. M. & Padovani, P. 1995, PASP, 107, 803Google Scholar
White, R. L., Becker, R. H., Gregg, M. D., et al., 2000, ApJS, 126, 133Google Scholar
Wilson, A. S., et al. 2000, ApJ, 544, L27Google Scholar
Wilson, A. S., Young, A. J., & Shopbell, P. L. 2001, ApJ, 547, 740Google Scholar
Worrall, D. M., et al. 2008, ApJ, 673, L135Google Scholar
Wozniak, P. R., et al. 1998, MNRAS, 299, 449Google Scholar
Wykes, S., et al. 2013, A&A, 558, 19Google Scholar
Yang, R. Z., et al. 2012, A&A, 541, 19Google Scholar