No CrossRef data available.
Published online by Cambridge University Press: 12 September 2017
Soon after the discovery of hot Jupiters, it was suspected that interaction of these massive bodies with their host stars could give rise to observable signals. We discuss the observational evidence for star-planet interactions (SPI) of tidal and magnetic origin observed in X-rays. Hot Jupiters can significantly impact the activity of their host stars through tidal and magnetic interaction, leading to either increased or decreased stellar activity – depending on the internal structure of the host star and the properties of the hosted planet. We provide several examples of these interactions. In HD 189733, the strongest X-ray flares are preferentially seen in a very restricted range of planetary phases. Hot Jupiters, can also obscure the X-ray signal during planetary transits. Observations of this phenomena have led to the discovery of a thin upper atmospheres in HD 189733A. On the other hand, WASP-18 – an F6 star with a massive hot Jupiter, shows no signs of activity in X-rays or UV. Several age indicators (isochrone fitting, Li abundance) point to a young age (~0.5 – −1.0 Gyr) and thus significant activity was expected. In this system, tidal SPI between the star and the very close-in and massive planet appears to disrupt the surface shear layer and thus nullify the stellar activity.