Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T16:43:38.901Z Has data issue: false hasContentIssue false

Numerical simulations of magnetic structures

Published online by Cambridge University Press:  26 August 2011

I. N. Kitiashvili
Affiliation:
W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA email: [email protected], [email protected] Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA email: [email protected]
A. G. Kosovichev
Affiliation:
W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA email: [email protected], [email protected]
A. A. Wray
Affiliation:
W.W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305, USA email: [email protected], [email protected]
N. N. Mansour
Affiliation:
NASA Ames Research Center, Moffett Field, Mountain View, CA 94040, USA email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We use 3D radiative MHD simulations of the upper turbulent convection layer for investigation of physical mechanisms of formation of magnetic structures on the Sun. The simulations include all essential physical processes, and are based of the LES (Large-Eddy Simulations) approach for describing the sub-grid scale turbulence. The simulation domain covers the top layer of the convection zone and the lower atmosphere. The results reveal a process of spontaneous formation of stable magnetic structures from an initially weak vertical magnetic field, uniformly distributed in the simulation domain. The process starts concentration of magnetic patches at the boundaries of granular cells, which are subsequently merged together into a stable large-scale structure by converging downdrafts below the surface. The resulting structure represents a compact concentration of strong magnetic field, reaching 6 kG in the interior. It has a cluster-like internal structurization, and is maintained by strong downdrafts extending into the deep layers.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2011

References

Bonet, J. A., Márquez, I., Sánchez Almeida, J., Cabello, I. & Domingo, V., 2008, Astrophys. J., 687, L131CrossRefGoogle Scholar
Bonet, J. A., Márquez, I., Sánchez Almeida, J., Palacios, J. et al. , 2010, arXiv:1009.1992Google Scholar
Cheung, M. C. M., Schüssler, M., Tarbell, T. D. & Title, A. M., 2008, Astrophys. J., 687, 1373CrossRefGoogle Scholar
Jacoutot, L., Kosovichev, A. G., Wray, A. A., & Mansour, N. N., 2008, Astrophys. J., 684, L51CrossRefGoogle Scholar
Kitiashvili, I. N., Kosovichev, A. G., Wray, A. A., & Mansour, N. N., 2009, Astrophys. J., 700, L178CrossRefGoogle Scholar
Kitiashvili, I. N., Kosovichev, A. G., Wray, A. A., & Mansour, N. N., 2010, Astrophys. J., 719, 307.CrossRefGoogle Scholar
Pötzi, W. & Brandt, P. N., 2005, Hvar Obs. Bull., 29, 61.Google Scholar
Rempel, M., Schüssler, M., & Knólker, M., 2009, Astrophys. J., 691, 640CrossRefGoogle Scholar
Stein, R. F. & Nordlund, Å., 2001, Astrophys. J., 546, 585.CrossRefGoogle Scholar
Stein, R. F., Bercik, D. & Nordlund, Å., 2003, ASP Conf. Ser., 286, 121Google Scholar
Stein, R. F., Lagerfjärd, A., Nordlund, Å., & Georgobiani, D., 2010, Solar Phys (in press)Google Scholar