Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T00:27:04.341Z Has data issue: false hasContentIssue false

Numerical modeling of core-collapse supernovae and compact objects

Published online by Cambridge University Press:  20 March 2013

Kohsuke Sumiyoshi*
Affiliation:
Numazu College of Technology, Ooka 3600, Numazu, Shizuoka 410-8501, Japan email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Massive stars (M ≥ 10M) end their lives with spectacular explosions due to gravitational collapse. The collapse turns the stars into compact objects such as neutron stars and black holes with the ejection of cosmic rays and heavy elements. Despite the importance of these astrophysical events, the mechanism of supernova explosions has been an unsolved issue in astrophysics. This is because clarification of the supernova dynamics requires the full knowledge of nuclear and neutrino physics at extreme conditions, and large-scale numerical simulations of neutrino radiation hydrodynamics in multi-dimensions. This article is a brief overview of the understanding (with difficulty) of the supernova mechanism through the recent advance of numerical modeling at supercomputing facilities. Numerical studies with the progress of nuclear physics are applied to follow the evolution of compact objects with neutrino emissions in order to reveal the birth of pulsars/black holes from the massive stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Bethe, H. A. & Wilson, J. R. 1985, ApJ, 295, 14Google Scholar
Bethe, H. A. 1990, Rev. Mod. Phys., 62, 801Google Scholar
Blondin, J. M., Mezzacappa, A., & DeMarino, C. 2003, ApJ, 584, 971Google Scholar
Blondin, J. M. & Mezzacappa, A. 2007, Nature, 445, 58CrossRefGoogle Scholar
Brockmann, R. & Machleidt, R. 1990, Phys. Rev., C42, 1965Google Scholar
Burrows, A., Reddy, S., & Thompson, T. A. 2006, Nucl. Phys., A777, 356Google Scholar
Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., & Hessels, J. W. T. 2010, Nature, 467, 1081Google Scholar
Hanke, F., Marek, A., Müller, B., & Janka, H.-T. 2012, ApJ, 755, 138Google Scholar
Hempel, M., Fischer, T., Schaffner-Bielich, J., & Liebendörfer, M. 2012, ApJ, 748, 70Google Scholar
Hirata, K., Kajita, T., Koshiba, M., Nakahata, M., & Oyama, Y. 1987, Phys. Rev. Lett., 58, 1490Google Scholar
Ishizuka, C., Ohnishi, A., Tsubakihara, K., Sumiyoshi, K., & Yamada, S. 2008, J. Phys. G: Nucl. Part. Phys., 35, 085201Google Scholar
Janka, H.-T. 2012, Ann. Rev. Nucl. Part. Sci. in press; arXiv:1206.2503Google Scholar
Kistler, M. D., Yüksel, H., Ando, S., Beacom, J. F., & Suzuki, Y. 2011, Phys. Rev., D83, 123008Google Scholar
Koshiba, M. 1992, Phys. Rep., 220, 229Google Scholar
Koshiba, M. 2003, Rev. Mod. Phys., 75, 1011Google Scholar
Kotake, K., Sumiyoshi, K., Yamada, S., Takiwaki, T., Kuroda, T., Suwa, Y., & Nagakura, H. 2012a, Prog. Theor. Exp. Phys., 2012, 01A301Google Scholar
Kotake, K. 2012b, Comptes Rendus Physique in press; arXiv:1110.5107Google Scholar
Lattimer, J. M. & Swesty, F. D. 1991, Nucl. Phys., A535, 331Google Scholar
Liebendörfer, M., Mezzacappa, A., Thielemann, F.-K., Messer, O. E., Hix, W. R., & Bruenn, S. W. 2001, Phys. Rev., D63, 103004Google Scholar
Nakazato, K., Sumiyoshi, K. & Yamada, S. 2010a, ApJ, 721, 1284Google Scholar
Nakazato, K., Sumiyoshi, K., Suzuki, H., & Yamada, S. 2010b, Phys. Rev., D81, 083009Google Scholar
Nordhaus, J., Burrows, A., Almgren, A., & Bell, J. 2010, ApJ, 720, 694Google Scholar
Ott, C. D., Burrows, A., Dessart, L., & Livne, E. 2008, ApJ, 685, 1069Google Scholar
Page, D., Lattimer, J. M., Prakash, M., & Steiner, A. W. 2004, ApJS, 155, 623Google Scholar
Pons, J. A., Reddy, S., Prakash, M., Lattimer, J. M., & Miralles, J. A. 1999, ApJ, 513, 780Google Scholar
Rampp, M. & Janka, H.-Th. 2000, ApJ, 539, L33Google Scholar
Sagert, I., Fischer, T., Hempel, M., Pagliara, G., Schaffner-Bielich, J., Mezzacappa, A., Thielemann, F.-K. & Liebendörfer, M. 2009, Phys. Rev. Lett., 102, 081101Google Scholar
Serot, B. D. & Walecka, J. D. 1986, Adv. Nucl. Phys., 16, 1Google Scholar
Shen, H., Toki, H., Oyamatsu, K., & Sumiyoshi, K. 1998a, Nucl. Phys., A637, 435Google Scholar
Shen, H., Toki, H., Oyamatsu, K., & Sumiyoshi, K. 1998b, Prog. Thoer. Phys., 100, 1013Google Scholar
Shen, H., Toki, H., Oyamatsu, K., & Sumiyoshi, K. 2011, ApJS, 197, 20Google Scholar
Steiner, A. W., Lattimer, J. M. & Brown, E. F., 2010 ApJ, 722, 33Google Scholar
Suleimanov, V., Poutanen, J., Revnivtsev, M., & Werner, K. 2011, ApJ, 742, 122Google Scholar
Sumiyoshi, K., Yamada, S., Suzuki, H., Shen, H., Chiba, S., & Toki, H. 2005, ApJ, 629, 922CrossRefGoogle Scholar
Sumiyoshi, K., Yamada, S., & Suzuki, H. 2007, ApJ, 667, 382Google Scholar
Sumiyoshi, K. & Yamada, S. 2012, ApJS, 199, 17Google Scholar
Takiwaki, T., Kotake, K., & Suwa, Y. 2012, ApJ, 749, 98Google Scholar
Wongwathanarat, A., Janka, H.-T., & Müller, E. 2010, ApJ, 725, L106Google Scholar