Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T03:25:30.106Z Has data issue: false hasContentIssue false

Nuclear ionised outflows in a sample of 30 local galaxies

Published online by Cambridge University Press:  29 March 2021

D. Ruschel-Dutra
Affiliation:
Departamento de Física, Universidade Federal de Santa Catarina, P.O. Box 476, 88040-900, Florianópolis, SC, Brazil e-mail:[email protected]
T. Storchi-Bergmann
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS, Brazil
A. Schnorr-Müller
Affiliation:
Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, 91501-970 Porto Alegre, RS, Brazil
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Understanding active galactic nuclei (AGN) feedback is essential for building a coherent picture of the evolution of the super massive black hole and its host galaxy. To that end we have analysed the inner kiloparsec of a sample of 30 local AGN with spatially resolved optical spectroscopy. In this talk I will review the analysis of the ionised gas for the galaxies in our sample, including kinematical maps, emission line ratios and fluxes. The W80 kinematical index is used to trace outflows, and also to provide an estimate for the outflowing velocity. Electron densities, derived from the [S II] ΛΛ6716, 6731Å lines, along with Hα luminosities and the sizes of the outflowing regions are employed in estimates of the outflowing gas mass. We find a median mass outflow rate of = 0.3 M yr-1 and median outflow power of log [P/(erg s-1)] = 40.4.

Type
Contributed Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of International Astronomical Union

References

Alexander, D. M. & Hickox, R. C. 2012, New A Rev., 56, 93 10.1016/j.newar.2011.11.003CrossRefGoogle Scholar
Allington-Smith, J., et al. 2002, PASA, 114, 892 CrossRefGoogle Scholar
Baron, D. & Netzer, H. 2019, MNRAS, 482, 3915 CrossRefGoogle Scholar
Baumgartner, W. H., Tueller, J., Markwardt, C. B., et al. 2013, ApJS series, 207, 19 10.1088/0067-0049/207/2/19CrossRefGoogle Scholar
Fabian, A. 2012, ARA&A, 50, 455 Google Scholar
Ferrarese, L. & Merritt, D. 2000, ApJ, 539, L9 CrossRefGoogle Scholar
Fiore, F., et al. 2017, A&A, 601, A143 Google Scholar
Gültekin, K., et al. 2009, ApJ, 698, 198 CrossRefGoogle Scholar
Harrison, C. M. 2017, Nature Astronomy, 1, 0165 10.1038/s41550-017-0165CrossRefGoogle Scholar
Kormendy, J. & Ho, L. C. 2013, ARA&A, 51, 511 Google Scholar
Madau, P. & Dickinson, M. 2014, ARA&A, 52, 415 Google Scholar
Proxauf, B., Öttl, S., & Kimeswenger, S. 2014, A&A, 561, A10 Google Scholar
Schaye, J., et al. 2015, MNRAS, 446, 521 CrossRefGoogle Scholar
Shimizu, T. T., et al. 2019, MNRAS, 490, 5860 CrossRefGoogle Scholar
Springel, V., Di Matteo, T., & Hernquist, L. 2005, MNRAS, 361, 776 CrossRefGoogle Scholar
Storchi-Bergmann, T. & Schnorr-Müller, A. 2019, Nature Astronomy, 3, 48 CrossRefGoogle Scholar
Vogelsberger, M., et al. 2014, Nature, 509, 177 CrossRefGoogle Scholar
van den Bosch, R. C. E., 2016, ApJ, 831, 134 10.3847/0004-637X/831/2/134CrossRefGoogle Scholar